skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Use of synthetic oligonucleotides for genomic DNA dot hybridization to split the DQw3 haplotype

Abstract

Comparison of two different HLA-DQ..beta..gene sequences from two DR4 individuals, probably corresponding to DQw3.2 (DQR4) and DQw3.1 (DQR5) specificities, has shown several nucleotide variations. Eight oligonucleotides (24 bases long), derived from these polymorphic areas, have been synthesized. Each oligonucleotide was hybridized to BamHI-digested DNA samples from eight families with HLA-DR4 individuals. Four polymorphic BamHI fragments were detected. Two of eight oligonucleotides gave a single signal (8.9 kilobases) on DQw3.2-positive haplotypes. The authors used one of these oligonucleotides in a genomic DNA dot hybridization and detected a hybridization signal only in DQw3.2-positive individuals. A very simple test like this allows the screening of a large population sample within a very short period.

Authors:
; ; ; ;
Publication Date:
Research Org.:
Centre d'Etude du Polymorphisme Humain, Paris (France)
OSTI Identifier:
5983440
Resource Type:
Journal Article
Resource Relation:
Journal Name: Proc. Natl. Acad. Sci. U.S.A.; (United States); Journal Volume: 85:8
Country of Publication:
United States
Language:
English
Subject:
59 BASIC BIOLOGICAL SCIENCES; HEREDITARY DISEASES; SCREENING; OLIGONUCLEOTIDES; DNA SEQUENCING; RFLPS; HYBRIDIZATION; ADULTS; CHILDREN; PHOSPHORUS 32; AGE GROUPS; BETA DECAY RADIOISOTOPES; BETA-MINUS DECAY RADIOISOTOPES; DAYS LIVING RADIOISOTOPES; DISEASES; ISOTOPES; LIGHT NUCLEI; NUCLEI; NUCLEIC ACIDS; ODD-ODD NUCLEI; ORGANIC COMPOUNDS; PHOSPHORUS ISOTOPES; RADIOISOTOPES; STRUCTURAL CHEMICAL ANALYSIS; 550201* - Biochemistry- Tracer Techniques

Citation Formats

Martell, M., Le Gall, I., Millasseau, P., Dausset, J., and Cohen, D. Use of synthetic oligonucleotides for genomic DNA dot hybridization to split the DQw3 haplotype. United States: N. p., 1988. Web. doi:10.1073/pnas.85.8.2682.
Martell, M., Le Gall, I., Millasseau, P., Dausset, J., & Cohen, D. Use of synthetic oligonucleotides for genomic DNA dot hybridization to split the DQw3 haplotype. United States. doi:10.1073/pnas.85.8.2682.
Martell, M., Le Gall, I., Millasseau, P., Dausset, J., and Cohen, D. 1988. "Use of synthetic oligonucleotides for genomic DNA dot hybridization to split the DQw3 haplotype". United States. doi:10.1073/pnas.85.8.2682.
@article{osti_5983440,
title = {Use of synthetic oligonucleotides for genomic DNA dot hybridization to split the DQw3 haplotype},
author = {Martell, M. and Le Gall, I. and Millasseau, P. and Dausset, J. and Cohen, D.},
abstractNote = {Comparison of two different HLA-DQ..beta..gene sequences from two DR4 individuals, probably corresponding to DQw3.2 (DQR4) and DQw3.1 (DQR5) specificities, has shown several nucleotide variations. Eight oligonucleotides (24 bases long), derived from these polymorphic areas, have been synthesized. Each oligonucleotide was hybridized to BamHI-digested DNA samples from eight families with HLA-DR4 individuals. Four polymorphic BamHI fragments were detected. Two of eight oligonucleotides gave a single signal (8.9 kilobases) on DQw3.2-positive haplotypes. The authors used one of these oligonucleotides in a genomic DNA dot hybridization and detected a hybridization signal only in DQw3.2-positive individuals. A very simple test like this allows the screening of a large population sample within a very short period.},
doi = {10.1073/pnas.85.8.2682},
journal = {Proc. Natl. Acad. Sci. U.S.A.; (United States)},
number = ,
volume = 85:8,
place = {United States},
year = 1988,
month = 4
}
  • In situ hybridization histochemistry is a valuable technique for localizing specific messenger RNA (mRNA) and detecting changes in gene expression. Generally, the mRNA of interest has been detected by probes obtained from cloned DNA and labelled to high specific activity by nick translation. Such probes have a number of disadvantages which can be circumvented by the use of short synthetic oligonucleotides designed to be complementary to a known mRNA sequence. We report here that synthetic oligonucleotides complementary to part of the mRNA coding for rat arginine-vasopressin (AVP) can be labelled to high specific activity with (/sup 125/I), using either themore » primer extension method with the Klenow fragment of DNA polymerase I or the 3'-tailing method with terminal deoxynucleotidyl transferase. Both AVP probes hybridized well to the magnocellular neurons of the hypothalamic paraventricular and supraoptic nuclei. A strong autoradiographic signal was present by 2 days, with grains largely confined to the perikaryon. These results compare favorably to those obtained with (/sup 32/P)- or (/sup 3/H)-labelled probes. Given the ease of the 3'-tailing method, (/sup 125/I)-labelled oligonucleotides appear to be especially useful probes for in situ hybridization histochemistry.« less
  • We have developed an efficient hybridization-based cDNA-selection method. A sandwich of three species - single-stranded cDNA, tagged RNA derived from genomic DNA, and biotinylated RNA complementary to the tag - allows specific retention of hybrids on an avidin-matrix. Previously, using model experiments, we demonstrated highly specific and efficient selection of a retinal gene, NRL, from complex mixtures of cDNA clones, using a sub-library from a 5 kb NRL genomic clone. We have now applied this selection strategy to isolate cDNAs from human adult retina and fetal eye libraries, with the {open_quotes}genomic RNA{close_quotes} derived from two YAC clones (OTC-C and 55B)more » spanning the region of X-linked retinitis pigmentosa (XLRP) locus RP3 at Xp21.1. Effectiveness of the selection-method was monitored by enrichment of TCTEX-1L gene that maps within the 55B YAC. Of the 15 selected cDNA clones that hybridized to the 55B YAC DNA, five appear to the map to specific cosmid clones derived from the 55B YAC. Inserts in these selected cDNA clones range from 0.5 to 2.3 kb in size. Additional clones are now being isolated and characterized. This procedure should be independent of the size or complexity of genomic DNA being used for selection, allow for the isolation of full-length cDNAs, and may have wider application.« less
  • Matrix-assisted laser desorption ionization mass spectrometry (MALDI MS) has been applied to increase the informational output from DNA sequence analysis. It has been used to analyze DNA by hybridization with microarrays of gel-immobilized oligonucleotides extended with stacked 5mers. In model experiments, a 28 nt long DNA fragment was hybridized with 10 immobilized, overlapping 8mers. Then, in a second round of hybridization DNA-8mer duplexes were hybridized with a mixture of 10 5mers. The stability of the 5mer complex with DNA was increased to raise the melting temperature of the duplex by 10-15{sup o}C as a result of stacking interaction with 8mers.more » Contiguous 13 bp duplexes containing an internal break were formed. MALDI MS identified one or, in some cases, two 5mers contiguously stacked to each DNA-8mer duplex formed on the microchip. Incorporating a mass label into 5mers optimized MALDI MS monitoring. This procedure enabled us to reconstitute the sequence of a model DNA fragment and identify polymorphic nucleotides. The application of MALDI MS identification of contiguously stacked 5mers to increase the length of DNA for sequence analysis is discussed.« less
  • The authors present a study on the refinement of filter-hybridization conditions for a series of synthetic oligonucleotides in the range from 17 to 50 base residues in length. Experimental conditions for hybridization and the subsequent washing steps of the filter were optimized for different lengths of the synthetic oligonucleotides by varying the formamide concentration and washing conditions. Target DNA was immobilized to the nitrocellulose filter with the slot blot technique. The sequences of the synthetic oligonucleotides are derived from the third exon of the human oncogene c-myc and the corresponding viral gene v-myc and the G+C content was between 43more » and 47%. Optimal conditions for hybridization with a 82% homologous 30-mer and 100% homologous 17-, 20-, 25-, 30-, and 50-mers were found to be a concentration of formamide of 15, 15, 30, 30, 40, and 50%, respectively. The melting temperature for these optimal hybridization and washing conditions was calculated to be up to 11/sup 0/C below the hybridization temperature actually used. This confirms that the duplexes are more stable than expected. The melting points for 17-, 20-, and 30-mers were measured in the presence of 5x SSC and found to be 43, 58, and 60/sup 0/C, respectively. Competition between double- and single-stranded DNA probes to the target DNA was investigated. The single-stranded DNA probes were about 30- to 40-fold more sensitive than the double-stranded DNA probes.« less
  • Split hand/split foot (SHSF), often referred to as ectrodactyly or lobster claw deformity, is a human developmental disorder characterized by a deep median cleft of the hands and feet, missing digits, and fusion of remaining digits. This anomaly can be seen alone, frequently autosomal dominant, or in association with other abnormalities. One locus for this defect has been localized to chromosome 7q21.3-q22.1. We report a patient with SHSF plus mental retardation, short stature and dysmorphic features who was found to have a microdeletion at this locus detected only with the aid of fluorescence in situ hybridization (FISH). T.H. is amore » 7 y.o. male who was referred for evaluation of foot anomalies and mild mental retardation. History was remarkable for growth retardation of postnatal onset and hypotonia. Renal ultrasound and audiology evaluation were normal. Physical exam revealed dysplastic ears, micrognathia, long philtrum, high narrow palate, and malformations of the feet consistent with SHSF. Family history was negative for limb abnormalities and mental retardation. A number of patients with SHSF and other anomalies have been found to have deletions involving chromosome 7q21-q22; therefore, high resolution chromosome analysis was performed in T.H. but was inconclusive. Cosmids and yeast artificial chromosomes which we had previously mapped to the SHSF critical region were used as FISH probes and a microdeletion was detected. We were thus able to determine the etiology of this child`s abnormalities and provide accurate genetic counseling, which would not have been possible with standard cytogenetic techniques. This technique also allowed us to further refine the SHSF critical region. This case illustrates the utility of FISH for the rapid identification of suspect microdeletions in SHSF. This approach should also be useful as an expeditious way of defining the critical regions for the location of genes which give rise to other developmental malformations.« less