skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Acute effects of carbon monoxide on cardiac electrical stability

Abstract

The objective of this project was to determine the effects of acute carbon monoxide exposure on cardiac electrical stability. To obtain a comprehensive assessment, diverse biological models were employed. These involved cardiac electrical testing in the normal and ischemic heart in anesthetized and conscious dogs. The experimental plan was designed both to examine the direct effects of carbon monoxide exposure on the myocardium and to evaluate possible indirect influences through alterations in platelet aggregability or changes in central nervous system activity in the conscious animal. Our results indicate that exposure to relatively high levels of carbon monoxide, leading to carboxyhemoglobin concentrations of up to 20 percent, is without significant effect on ventricular electrical stability. This appears to be the case in the acutely ischemic heart as well as in the normal heart. It is important to note that the total exposure period was in the range of 90 to 124 minutes. The possibility that longer periods of exposure or exacerbation from nicotine in cigarette smoke could have a deleterious effect cannot be excluded. We also examined whether or not alterations in platelet aggregability due to carbon monoxide exposure could be a predisposing factor for cardiac arrhythmias. A model involving partialmore » coronary artery stenosis was used to simulate the conditions under which platelet plugs could lead to myocardial ischemia and life-threatening arrhythmias. We found no changes either in the cycle frequency of coronary blood flow oscillations or in platelet aggregability during carbon monoxide exposure. Thus, carbon monoxide exposure does not appear to alter platelet aggregability or its effect on coronary blood flow during stenosis. In the final series of experiments, we examined the effects of carbon monoxide exposure in the conscious state.« less

Authors:
; ;  [1]
  1. (Georgetown Univ. Medical Center, Washington, DC (USA))
Publication Date:
OSTI Identifier:
5923189
Resource Type:
Journal Article
Resource Relation:
Journal Name: Research Report Health Effects Institue; (USA); Journal Volume: 35
Country of Publication:
United States
Language:
English
Subject:
63 RADIATION, THERMAL, AND OTHER ENVIRON. POLLUTANT EFFECTS ON LIVING ORGS. AND BIOL. MAT.; BLOOD PLATELETS; BLOOD COAGULATION; CARBON MONOXIDE; BIOLOGICAL EFFECTS; HEART; SENSITIVITY; BLOOD FLOW; CARBOXYHEMOGLOBIN; CARDIOVASCULAR DISEASES; DOGS; ELECTROCARDIOGRAMS; METABOLISM; ANIMALS; BIOLOGICAL MATERIALS; BLOOD; BLOOD CELLS; BODY; BODY FLUIDS; CARBON COMPOUNDS; CARBON OXIDES; CARDIOVASCULAR SYSTEM; CHALCOGENIDES; DIAGRAMS; DISEASES; MAMMALS; MATERIALS; ORGANS; OXIDES; OXYGEN COMPOUNDS; VERTEBRATES 560300* -- Chemicals Metabolism & Toxicology

Citation Formats

Verrier, R.L., Mills, A.K., and Skornik, W.A. Acute effects of carbon monoxide on cardiac electrical stability. United States: N. p., 1990. Web.
Verrier, R.L., Mills, A.K., & Skornik, W.A. Acute effects of carbon monoxide on cardiac electrical stability. United States.
Verrier, R.L., Mills, A.K., and Skornik, W.A. 1990. "Acute effects of carbon monoxide on cardiac electrical stability". United States. doi:.
@article{osti_5923189,
title = {Acute effects of carbon monoxide on cardiac electrical stability},
author = {Verrier, R.L. and Mills, A.K. and Skornik, W.A.},
abstractNote = {The objective of this project was to determine the effects of acute carbon monoxide exposure on cardiac electrical stability. To obtain a comprehensive assessment, diverse biological models were employed. These involved cardiac electrical testing in the normal and ischemic heart in anesthetized and conscious dogs. The experimental plan was designed both to examine the direct effects of carbon monoxide exposure on the myocardium and to evaluate possible indirect influences through alterations in platelet aggregability or changes in central nervous system activity in the conscious animal. Our results indicate that exposure to relatively high levels of carbon monoxide, leading to carboxyhemoglobin concentrations of up to 20 percent, is without significant effect on ventricular electrical stability. This appears to be the case in the acutely ischemic heart as well as in the normal heart. It is important to note that the total exposure period was in the range of 90 to 124 minutes. The possibility that longer periods of exposure or exacerbation from nicotine in cigarette smoke could have a deleterious effect cannot be excluded. We also examined whether or not alterations in platelet aggregability due to carbon monoxide exposure could be a predisposing factor for cardiac arrhythmias. A model involving partial coronary artery stenosis was used to simulate the conditions under which platelet plugs could lead to myocardial ischemia and life-threatening arrhythmias. We found no changes either in the cycle frequency of coronary blood flow oscillations or in platelet aggregability during carbon monoxide exposure. Thus, carbon monoxide exposure does not appear to alter platelet aggregability or its effect on coronary blood flow during stenosis. In the final series of experiments, we examined the effects of carbon monoxide exposure in the conscious state.},
doi = {},
journal = {Research Report Health Effects Institue; (USA)},
number = ,
volume = 35,
place = {United States},
year = 1990,
month =
}
  • The objective of the project was to determine the effects of acute carbon monoxide exposure on cardiac electrical stability in the normal and ischemic heart of anesthetized and conscious dogs. Exposure (90 to 120 minutes) to relatively high levels of carbon monoxide, leading to carboxyhemoglobin concentrations of up to 20 percent, was without significant effect on ventricular electrical stability in laboratory dogs. This appears to be the case in the acutely ischemic heart as well as in the normal heart. Using a model involving partial coronary artery stenosis, no changes were found in either the cycle frequency of coronary bloodmore » flow oscillations or in platelet aggregability during carbon monoxide exposure. Also examined were the effects of carbon monoxide exposure in the conscious state in order to take into consideration possible adverse consequences mediated by the central nervous system. The study found no adverse effects on the cardiac-excitable properties in response to either a 2-hour- or 24-hour-exposure paradigm.« less
  • Embryonic rat cardiac muscle cells grown in the presence of various tensions of CO (5-95%) without the presence of O{sub 2} survived and exhibited reduced cell growth, which was concentration dependent. When cardiac muscle cells were grown in the presence of a mixture of CO (10-20%) and O{sub 2} (10-20%), the growth rate of these cells was comparable to that of the control cells. Cardiac myocytes continued to beat when exposed to varying tensions of CO, except in the case of 95% CO. The cells exposed to different concentrations of CO contained fewer myofibrils of different stages of differentiation comparedmore » with the control and the culture exposed to a mixture of 20% O{sub 2} and 20% CO, with cells that contained abundant, highly differentiated myofibrils. There was no significant difference in the structural organization of mitochondria between the control and the surviving experimental cells. It is evident from the present studies that O{sub 2} is required for the optimum in vitro cellular growth of cardiac muscle. Furthermore, CO in combination with O{sub 2} at a concentration of 10 or 20% can produce optimal growth of cardiac muscle cells in culture. To determine maximum labeling index during the labeling period, cells were continuously labeled with ({sup 3}H)thymidine for 24 h before the termination of cultures.« less
  • Doxorubicin (DXR) has been used in variety of human malignancies for decades. Despite its efficacy in cancer, clinical usage is limited because of its cardiotoxicity, which has been associated with oxidative stress and apoptosis. Carbon monoxide-releasing molecules (CORMs) have been shown to reduce the oxidative damage and apoptosis. The present study investigated the effects of CORM-2, a fast CO-releaser, against DXR-induced cardiotoxicity in mice using biochemical, histopathological and gene expression approaches. CORM-2 (3, 10 and 30 mg/kg/day) was administered intraperitoneally (i.p.) for 10 days and terminated the study on day 11. DXR (20 mg/kg, i.p.) was injected before 72 hmore » of termination. Mice treated with DXR showed cardiotoxicity as evidenced by elevation of serum creatine kinase (CK) and lactate dehydrogenase (LDH), tissue malondialdehyde (MDA), caspase-3 and decrease the level of total antioxidant status (TAS) in heart tissues. Pre- and post-treatment with CORM-2 (30 mg/kg, i.p.) elicited significant improvement in CK, LDH, MDA, caspase-3 and TAS levels. Histopathological studies showed that cardiac damage with DXR has been reversed with CORM-2 + DXR treatment. There was dramatic decrease in hematological count in DXR-treated mice, which has been improved with CORM-2. Furthermore, there was also elevation of mRNA expression of heme oxygenase-1, hypoxia inducible factor-1 alpha, vascular endothelial growth factor and decrease in inducible-nitric oxide synthase expression upon treatment with CORM-2 that might be linked to cardioprotection. These data suggest that CORM-2 treatment provides cardioprotection against acute doxorubicin-induced cardiotoxicity in mice and this effect may be attributed to CORM-2-mediated antioxidant and anti-apoptotic properties.« less
  • The stability of carbon monoxide (CO) in blood was studied under various conditions of storage using both spectrophotometric and gas chromatographic-flame ionization detector (GC-FID) methods of analysis. Changes (losses) in percent carbon monoxide saturation occurred under some conditions but not under others. Various mechanisms for CO losses are considered and one (passive diffusion of CO gas) best explains these observations. Losses of up 60% of the original saturation occurred when blood was kept in uncapped containers at room temperature for 2 1/2 weeks or at 4/sup 0/C for 3 weeks. However, no changes occurred when blood was kept in tightlymore » sealed containers for at least 4 months at either temperature.« less