skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Effects of magmatic and metamorphic volatiles on the evolution of fluid-rock interactions and fluid pressure during contact metamorphism

Abstract

Finite difference models of hydrothermal flow around a cooling intrusion that include fluid production from the magma during crystallization and from wall rocks during heating are used to investigate the evolution of fluid pressure and fluid-rock interactions during the contact metamorphism. For a granodiorite intrusion with a width of 9 km and releasing just 1: H[sub 2]O linearly during crystallization, fluid production elevates fluid pressures to lithostatic values above and adjacent to the intrusion when permeabilities are less than 1 [mu]D (10[sup [minus]18] m[sup 2]). Alternatively, hydrofracturing resulting from fluid production would be sufficient to create and maintain a time-averaged permeability of 1 [mu]D for 50,000 years: permeability decreases gradually with time afterward until the magma crystallizes (350,000 years). In detail, the history depends strongly on how fluids are released from the crystallizing magma. The effect is comparable to that obtained for devolatilization of 5% H[sub 2]O by weight over heating of 400 C in adjacent wall rocks. Fluid production dominates other mechanisms for elevating fluid pressures such as thermal expansion of pore fluids or ductile strain. In models with both magmatic and metamorphic fluids, fluid flow is outward from the inner aureole for much of the cooling history atmore » wall-rock permeabilities of [le]100 [mu]D. Extensive up-temperature flow is not predicted. The evolution of flow is such that magmatic fluids can initially dominate fluid-rock interactions in a plume above the intrusion, although the timing of interaction of magmatic and metamorphic waters is sensitive to the detailed devolatilization histories. Initial pore fluids rapidly become insignificant in the overall fluid budget. Surface or external fluids infiltrate only late in the cooling history, as rocks within a few kilometers of the intrusion are cooling.« less

Authors:
 [1]
  1. Science, Washington, DC (United States)
Publication Date:
OSTI Identifier:
5690149
Report Number(s):
CONF-921058-
Journal ID: ISSN 0016-7592; CODEN: GAAPBC
Resource Type:
Conference
Journal Name:
Geological Society of America, Abstracts with Programs; (United States)
Additional Journal Information:
Journal Volume: 24:7; Conference: 1992 annual meeting of the Geological Society of America (GSA), Cincinnati, OH (United States), 26-29 Oct 1992; Journal ID: ISSN 0016-7592
Country of Publication:
United States
Language:
English
Subject:
58 GEOSCIENCES; GEOLOGIC FORMATIONS; METAMORPHISM; ROCK-FLUID INTERACTIONS; CRYSTALLIZATION; FINITE DIFFERENCE METHOD; GEOLOGIC MODELS; MAGMA; PERMEABILITY; RESERVOIR FLUIDS; RESERVOIR PRESSURE; VOLATILE MATTER; CALCULATION METHODS; FLUIDS; ITERATIVE METHODS; MATTER; NUMERICAL SOLUTION; PHASE TRANSFORMATIONS; 580000* - Geosciences

Citation Formats

Hanson, R B. Effects of magmatic and metamorphic volatiles on the evolution of fluid-rock interactions and fluid pressure during contact metamorphism. United States: N. p., 1992. Web.
Hanson, R B. Effects of magmatic and metamorphic volatiles on the evolution of fluid-rock interactions and fluid pressure during contact metamorphism. United States.
Hanson, R B. Wed . "Effects of magmatic and metamorphic volatiles on the evolution of fluid-rock interactions and fluid pressure during contact metamorphism". United States.
@article{osti_5690149,
title = {Effects of magmatic and metamorphic volatiles on the evolution of fluid-rock interactions and fluid pressure during contact metamorphism},
author = {Hanson, R B},
abstractNote = {Finite difference models of hydrothermal flow around a cooling intrusion that include fluid production from the magma during crystallization and from wall rocks during heating are used to investigate the evolution of fluid pressure and fluid-rock interactions during the contact metamorphism. For a granodiorite intrusion with a width of 9 km and releasing just 1: H[sub 2]O linearly during crystallization, fluid production elevates fluid pressures to lithostatic values above and adjacent to the intrusion when permeabilities are less than 1 [mu]D (10[sup [minus]18] m[sup 2]). Alternatively, hydrofracturing resulting from fluid production would be sufficient to create and maintain a time-averaged permeability of 1 [mu]D for 50,000 years: permeability decreases gradually with time afterward until the magma crystallizes (350,000 years). In detail, the history depends strongly on how fluids are released from the crystallizing magma. The effect is comparable to that obtained for devolatilization of 5% H[sub 2]O by weight over heating of 400 C in adjacent wall rocks. Fluid production dominates other mechanisms for elevating fluid pressures such as thermal expansion of pore fluids or ductile strain. In models with both magmatic and metamorphic fluids, fluid flow is outward from the inner aureole for much of the cooling history at wall-rock permeabilities of [le]100 [mu]D. Extensive up-temperature flow is not predicted. The evolution of flow is such that magmatic fluids can initially dominate fluid-rock interactions in a plume above the intrusion, although the timing of interaction of magmatic and metamorphic waters is sensitive to the detailed devolatilization histories. Initial pore fluids rapidly become insignificant in the overall fluid budget. Surface or external fluids infiltrate only late in the cooling history, as rocks within a few kilometers of the intrusion are cooling.},
doi = {},
journal = {Geological Society of America, Abstracts with Programs; (United States)},
issn = {0016-7592},
number = ,
volume = 24:7,
place = {United States},
year = {1992},
month = {1}
}

Conference:
Other availability
Please see Document Availability for additional information on obtaining the full-text document. Library patrons may search WorldCat to identify libraries that hold this conference proceeding.

Save / Share: