skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: High pressure combustion studies under combustion-driven oscillatory flow conditions. Final report, 1 July 1994-30 June 1997

Technical Report ·
OSTI ID:564762

Rocket engines fueled by a dense propellant such as kerosene provide a number of advantages over hydrogen-fueled engines for primary stages. A major problem in the development of liquid fueled rocket engines has been the occurrence of combustion instability. The lack of a detailed understanding of how combustion instability occurs in liquid-fueled rocket engines has resulted in costly engine development programs that must be avoided in the future. The present research program examined the specific effects of atomization in combustion instability. The effects of mean drop size, drop size distribution, and atomization periodicity were examined explicitly with a combustion response model, the results from which indicated that all of these effects were important. It was shown that periodic atomization, in particular, results in large variations in the magnitude of the response when the atomization frequency is on the same order as the acoustic oscillation frequency. Experimental results from a sub-scale rocket combustor that used electro-mechanically forced atomization to accentuate the natural frequency of periodic atomization associated with impinging jet injectors were also undertaken. The presence of forced longitudinal modes, corresponding to the forced atomization frequencies, substantiate the importance of periodic atomization. A conceptual model of this potentially dominant mechanism of combustion instability was also developed as part of the study.

Research Organization:
Pennsylvania State Univ., University Park, PA (United States). Davey Lab.
OSTI ID:
564762
Report Number(s):
AD-A-330567/9/XAB; CNN: Contract F49620-94-1-0235; TRN: 73560243
Resource Relation:
Other Information: PBD: 3 Oct 1997
Country of Publication:
United States
Language:
English