skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Proton nuclear magnetic resonance studies of the effects of ligand binding on ryptophan residues of selectively deuterated dihydrofolate reductase from Lactobacillus casei

Journal Article · · Biochemistry; (United States)
OSTI ID:5589198

We have prepared a selectively deuterated dihydrofolate reductase in which all the aromatic protons except the C(2) protons of tryptophan have been replaced by deuterium and have examined the 1H NMR spectra of its complexes with folate, trimethoprim, methotrexate, NADP+, and NADPH. One of the four Trp C(2)-proton resonance signals (signal P at 3.66 ppm from dioxane) has been asigned to Trp-21 by examining the NMR spectrum of a selectively deuterated N-bromosuccinimide-modified dihydrofolate reductase. This signal is not perturbed by NADPH, indicating that the coenzyme is not binding close to the 2 position of Trp-21. This contrasts markedly with the 19F shift (2.7 ppm) observed for the 19F signal of Trp-21 in the NADPH complex with the 6-fluorotryptophan-labeled enzyme. In fact the crystal structure of the enzyme . methotrexate . NADPH shows that the carboxamide group of the reduced nicotinamide ring is near to the 6 position of Trp-21 but remote from its 2 position. The nonadditivity of the 1H chemical-shift contributions for signals tentatively assigned to Trp-5 and -133 indicates that these residues are influenced by ligand-induced conformational changes.

Research Organization:
National Inst. for Medical Research, London, England
OSTI ID:
5589198
Journal Information:
Biochemistry; (United States), Vol. 19:11
Country of Publication:
United States
Language:
English