skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Experimental study on crack growth behavior for austenitic stainless steel in high temperature pure water

Journal Article · · J. Pressure Vessel Technol.; (United States)
DOI:https://doi.org/10.1115/1.3264773· OSTI ID:5539465

Crack growth behavior of Type 304 stainless steel in a simulated BWR water environment was investigated for the quantitative characterization of subcritical flaw growth in BWR piping systems. Crack propagation rates under corrosion fatigue and stress corrosion cracking were generated using compact specimens. The effects of several parameters on the rates were discussed. Furthermore, surface crack growth behavior was examined under different modes of cyclic loading, and results were discussed in comparison with compact specimen data. The corrosion fatigue crack propagation rates strongly depended on the frequency and the stress ratio. The rates bacame higher as the frequency lowered and the stress ratio increased. No effect from dissolved oxygen concentration and heat treatment of the steel was observed in tests, where transgranular cracking mainly took place. Stress corrosion cracking rate data indicated K/sub ISCC/ was above 15 MPa.m/sup 1/2/. On the other hand, surface crack growth behavior included scattered crack propagation rates. However, the relationship between da/dN and ..delta..K was basically similar to that obtained in the compact specimens, except under given test conditions, where the acceleration for the crack growth rate at a crack tip on the panel surface was different from that at the deepest point.

Research Organization:
Research and Development Center, Toshiba Corp., Saiwaiku, Kawasaki
OSTI ID:
5539465
Journal Information:
J. Pressure Vessel Technol.; (United States), Vol. 108:2
Country of Publication:
United States
Language:
English