skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Soot oxidation and agglomeration modeling in a microgravity diffusion flame

Journal Article · · Combustion and Flame
;  [1]
  1. Univ. of Texas, Austin, TX (United States). Dept. of Mechanical Engineering

The global evolution of a microgravity diffusion flame is detailed. Gas species evolution is computed using a reduced finite rate chemical mechanism. Soot evolution is computed using various combinations of existing soot mechanisms. Radiative transfer is coupled to the soot and gas phase chemistry processes using a P1 spherical harmonics radiation model. The soot agglomeration model was examined to note the dependence of soot growth and oxidation processes on soot surface area predictions. For limiting cases where agglomeration was excluded from the soot evolution model, soot primary particle sizes and number concentrations were calculated, and the number of primary particles per aggregate was inferred. These computations are compared with experimental results for microgravity and nonbuoyant flame conditions.

OSTI ID:
543432
Journal Information:
Combustion and Flame, Vol. 110, Issue 1-2; Other Information: PBD: Jul 1997
Country of Publication:
United States
Language:
English