skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Sulfur isotopic systematics in alteration assemblages in martian meteorite Allan Hills 84001

Journal Article · · Geochimica et Cosmochimica Acta
; ; ;  [1]
  1. Univ. of New Mexico, Albuquerque, NM (United States)

ALH84001 is a coarse-grained, clastic orthopyroxenite meteorite related to the SNC meteorite group (shergottites, nakhlites, Chassigny). Superimposed upon the orthopyroxene-dominant igneous mineral assemblage is a hydrothermal signature. This hydrothermal overprint consists of carbonate assemblages occurring in spheroidal aggregates and fine-grained carbonate-sulfide vug-filling. The sulfide in this assemblage has been identified as pyrite, an unusual sulfide in meteorites. Previously, Burgess et al. (1989) reported a bulk {delta} {sup 34}S for a SNC group meteorite (Shergotty) of -0.5 {+-} 1.5%. Here, we report the first martian {delta} {sup 34}S values from individual sulfide grains. Using newly developed ion microprobe techniques, we were able to determine {delta} {sup 34}S of the pyrite in ALH84001 with a 1 {alpha} precision of better than {+-}0.5%. The {delta} {sup 34}S values for the pyrite range from +4.8 to +7.8%. Within the stated uncertainties, the pyrite from ALH84001 exhibits a real variability in {delta} {sup 34}S in this alteration assemblage. In addition, these sulfides are demonstrably enriched in {sup 34}S relative to Canon Diablo troilite and sulfides from most other meteorites. This signature implies that the planetary body represented by ALH 84001 experienced processes capable of fractionating sulphur isotopes and that hydrothermal conditions changed during pyrite precipitation (T, pH, fluid composition, etc.). These new data are not consistent with the pyrite recording either biogenic activity or atmospheric fractionation of sulphur through nonthermal escape mechanisms or oxidation processes. This study also demonstrates the usefulness of ion microprobe measurements of sulphur isotopes in constraining conditions on other planetary bodies.

OSTI ID:
543380
Journal Information:
Geochimica et Cosmochimica Acta, Vol. 60, Issue 15; Other Information: PBD: Aug 1996
Country of Publication:
United States
Language:
English