skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Density separation of materials by using magnetic fluids

Abstract

The magnetic fluid is a colloidal suspension of magnetite in kerosene, prepared by a low-cost process. Separation is accomplished in an open trough filled with magnetic fluid. A magnetic field is established in the fluid, by energizing an electromagnet having poles on each side of the trough. Due to the design of the magnet poles and air gaps, the magnetic field is strongest at the bottom, about 10,000 oersteds, and uniformly decreases in strength to about 2000 oersteds at the top of the fluid. Therefore, the magnetic field gradient increases with depth. The magnetic force attracts the entire separation medium (magnetic fluid) creating a reaction force of equal magnitude and acting in the opposite direction. This reaction created within a magnetic fluid/magnetic field combination is called a magnetic levitation force. It increases with the field strength. In this case because the magnetic field is strongest at the bottom of the trough, the magnetic levitation force will quickly float lighter material while heavier material sinks. The separated materials are removed from the trough by two conveyor belts. Sink materials are collected near the bottom while float materials are collected near the surface. Changing the magnetic field strength, by changing the currentmore » through the electromagnet and/or the magnetic strength of the magnetic fluid allows wide variations.« less

Publication Date:
OSTI Identifier:
5424644
Resource Type:
Journal Article
Resource Relation:
Journal Name: Bur. Mines Technol. News; (United States); Journal Volume: 76
Country of Publication:
United States
Language:
English
Subject:
01 COAL, LIGNITE, AND PEAT; COAL PREPARATION; MAGNETIC SEPARATORS; KEROSENE; MAGNETITE; CHALCOGENIDES; COMMINUTION; CONCENTRATORS; FUELS; IRON COMPOUNDS; IRON ORES; IRON OXIDES; LIQUID FUELS; MINERALS; ORES; OXIDE MINERALS; OXIDES; OXYGEN COMPOUNDS; PETROLEUM PRODUCTS; TRANSITION ELEMENT COMPOUNDS 013000* -- Coal, Lignite, & Peat-- Transport, Handling, & Storage

Citation Formats

Not Available. Density separation of materials by using magnetic fluids. United States: N. p., 1980. Web.
Not Available. Density separation of materials by using magnetic fluids. United States.
Not Available. 1980. "Density separation of materials by using magnetic fluids". United States. doi:.
@article{osti_5424644,
title = {Density separation of materials by using magnetic fluids},
author = {Not Available},
abstractNote = {The magnetic fluid is a colloidal suspension of magnetite in kerosene, prepared by a low-cost process. Separation is accomplished in an open trough filled with magnetic fluid. A magnetic field is established in the fluid, by energizing an electromagnet having poles on each side of the trough. Due to the design of the magnet poles and air gaps, the magnetic field is strongest at the bottom, about 10,000 oersteds, and uniformly decreases in strength to about 2000 oersteds at the top of the fluid. Therefore, the magnetic field gradient increases with depth. The magnetic force attracts the entire separation medium (magnetic fluid) creating a reaction force of equal magnitude and acting in the opposite direction. This reaction created within a magnetic fluid/magnetic field combination is called a magnetic levitation force. It increases with the field strength. In this case because the magnetic field is strongest at the bottom of the trough, the magnetic levitation force will quickly float lighter material while heavier material sinks. The separated materials are removed from the trough by two conveyor belts. Sink materials are collected near the bottom while float materials are collected near the surface. Changing the magnetic field strength, by changing the current through the electromagnet and/or the magnetic strength of the magnetic fluid allows wide variations.},
doi = {},
journal = {Bur. Mines Technol. News; (United States)},
number = ,
volume = 76,
place = {United States},
year = 1980,
month = 3
}
  • A number of phase-separation mechanisms in fluids are hidden in earth-bound experiments due to the influence of gravitationally induced flow. Solutions to this problem can be found by using strictly matched-density systems, such as the partially deuterated cyclohexane and methanol system (C/sup */C-M), or by performing experiments in space so as to benefit from the microgravity environment. Both types of studies have been performed here to determine quantitatively to what extent such matched-density systems could recreate, on earth, microgravity conditions; they were restricted to the neighborhood of the liquid-liquid critical point. A 6-min microgravity environment has been provided in themore » sounding rockets of the TEXUS program: Two experiments have been performed, one (T11) using the nonmatched-density system of fully deuterated cyclohexane and methanol (C/sup */-M), and one (T13) using the matched-density system C/sup */C-M. In experiment T13 the phase separation was seen to be characterized by a high-contrast, periodiclike pattern, so that the observations could be performed by a simple optical method. In order to analyze quantitatively the possible differences with the earth-based experiments, the origin of the detected images had to be carefully analyzed. It appeared that they are connected to the interface pattern of the phase-separating fluid. Therefore, after digitization and statistical treatment, it was possible to check the important scaling properties of the phase separation: structure factor, reduced moments, typical wavelength pattern. Experiment T11 was qualitatively different from the earth-bound experiment and can be understood only by an unexpected extreme sensitivity of the growth mechanism to the volume fraction.« less
  • A magnetically based detoxification system is being developed as a therapeutic tool for selective and rapid removal of biohazards, i.e. chemicals and radioactive substances, from human blood. One of the key components of this system is a portable magnetic separator capable of separating polymer-based magnetic nano/micro-spheres from arterial blood flow in an ex vivo unit. The magnetic separator consists of an array of alternating and parallel capillary tubing and magnetizable wires, which is exposed to an applied magnetic field created by two parallel permanent magnets such that the magnetic field is perpendicular to both the wires and the fluid flow.more » In this paper, the performance of this separator was evaluated via preliminary in vitro flow experiments using a separator unit consisting of single capillary glass tubing and two metal wires. Pure water, ethylene glycol-water solution (v:v = 39:61 and v:v = 49:51) and human whole blood were used as the fluids. The results showed that when the viscosity increased from 1.0 cp to 3.0 cp, the capture efficiency (CE) decreased from 90% to 56%. However, it is still feasible to obtain >90% CE in blood flow if the separator design is optimized to create higher magnetic gradients and magnetic fields in the separation area.« less
  • A portable separator has been developed to quantitatively separate blood-borne magnetic spheres in potentially high-flow regimes for the human detoxification purpose. In the separator design, an array of biocompatible capillary tubing and magnetizable wires is immersed in an external magnetic field that is generated by two permanent magnets. The wires are magnetized and the high magnetic field gradient from the magnetized wires helps to collect blood-borne magnetic nano/micro-spheres from the blood flow. In this study, a 3D numerical model was created and the effect of tubing-wire configurations on the capture efficiency of the system was analyzed using COMSOL Multiphysics 3.3{reg_sign}.more » The results showed that the configuration characterized by bi-directionally alternating wires and tubes was the best design with respect to the four starting configurations. Preliminary in vitro experiments verified the numerical predictions. The results helped us to optimize a prototype portable magnetic separator that is suitable for rapid sequestration of magnetic nano/micro-spheres from the human blood stream while accommodating necessary clinical boundary conditions.« less
  • Research objectives were to acquire a body of information on the properties and potential applications of magnetic fluids, to study the selective coating behavior of magnetic fluids when contacted with a mixture of organic an inorganic matter, and to determine the extent of coal beneficiation that can be acccomplished with fluid-enhanced magnetic separation. Objectives were achieved by performing an extensive literature survey and by acquiring and testing samples of three fluids and several commercially-important domestic coals. Coal beneficiation tests were conducted in a high intensity induced-roll dry magnetic separator and in a high-gradient matrix-type wet magnetic separator. The induced-roll devicemore » could not beneficiate untreated coal, but high yields of magnetic clean coal were obtained when the feed was first pretreated with magnetic fluid. The high-gradient separator did achieve substantial coal beneficiation of untreated coal, and level of coal cleaning increased moderately when the feed was pretreated with magnetic fluids. However, yield of the nonmagnetic clean coal decreased. All magnetic fluids tested exhibited the ability to wet both organic and inorganic surfaces but showed a preference for organic surfaces. Testing of a high-ash preparation-plant refuse indicated that the organic fluid was capable of selective attachment to the organic components of a complex feed mixture.« less
  • Solubilities have been measured for a mixture of 2,3- and 2,6-dimethylnaphthalene in supercritical fluid carbon dioxide to identify retrograde regions, which have an inverse solubility versus temperature relationship. A retrograde crystallization process has been designed and tested for the separation of the two isomers at supercritical conditions. A thermodynamic framework has been developed which may be used to locate retrograde regions in order to evaluate the feasibility of retrograde crystallization processes. The complex effect of temperature on solubility at constant pressure has been expressed in terms of two approximately constant derivatives and the volume expansivity of the pure solvent.