skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Observations of volcanic tremor at Mount St. Helens volcano

Journal Article · · J. Geophys. Res.; (United States)

Digital recordings of ground motion during tremor episodes accompanying eruptions at Mount St. Helens Volcano in the state of Washington on August 7 and October 16-18, 1980, are studied. The spectra of the vertical component waveforms contain at least two dominant peaks at 1.0 and 1.3 Hz for all events recorded during both eruptions that were studied. Spectra of horizontal ground motion show peaks at 0.9 and 1.1 Hz. The relative amplitude of the two peaks changes between tremor episodes and during single tremor episodes and shows no consistent relation to amplitude of ground motion. Spectra of long-period earthquakes are very similar to those of tremor events, suggesting that tremor is composed of many long-period earthquakes that occur over a period of time. The unique waveform of tremor events observed at Mount St. Helens must be due to a source effect, since the relative amplitude of the two dominant peaks changes during tremor episodes. The path effect on tremor waveforms is small since there are no peaks in the spectra of waveforms recorded during tectonic earthquakes occurring in the vicinity of Mount S. Helens. The consistency of the location of the spectral peaks for the wide range of tremor amplitudes means that there must be a physical length at the source that is constant, independent of the amplitude of motion at the source. Amplitude of ground motion varies between 0.11 and 4.7 ..mu..m. Seismic moment rates during the two eruptions are found to vary between 6 x 10/sup 18/ and 1 x 10/sup 20/ dynes cm/s. Study of tremor amplitudes recorded at Corvallis, Oregon, leads to the conclusion that tremor accompanying the cataclysmic May 18, 1980, eruption was at least one order of magnitude larger in amplitude than tremor during August and October.

Research Organization:
Oregon State Univ., Corvallis
OSTI ID:
5376397
Journal Information:
J. Geophys. Res.; (United States), Vol. 88:B4
Country of Publication:
United States
Language:
English