skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Mean field kinetic theory of a classical electron gas in a periodic potential. II. Qualitative analysis of the mean-field solution in one dimension

Journal Article · · J. Stat. Phys.; (United States)
DOI:https://doi.org/10.1007/BF01009353· OSTI ID:5372945

A qualitative analysis is made of the static and dynamic behavior of a one-dimensional classical electron gas in a periodic potential in the framework of a mean-field kinetic theory. The mean-field equations have been formally solved elsewhere in terms of the trajectories of one electron in the mean-field equilibrium potential, which determines the local electronic density. Taking advantage of the relative simplicity of the mean-field expressions in one dimension, we study the effects of the temperature upon the local electronic density, the static structure factor, and the spectrum of the fluctuations in the long-wavelength limit. At high temperatures, the system tends to behave like a homogeneous electron gas; however, the collective plasmon mode at zero wavenumber is damped and shifted below the plasma frequency. At low temperatures, the system behaves as an ensemble of independent electrons strongly localized in the neighborhood of the fixed ions that create the periodic potential; the plasmon mode then vanishes. The author consider the physical relevance of these predictions. They turn out to be quite reasonable, despite the failure of meanfield theory to predict the phase of the model.

Research Organization:
Universite de Paris-Sud (France)
OSTI ID:
5372945
Journal Information:
J. Stat. Phys.; (United States), Vol. 49:3/4
Country of Publication:
United States
Language:
English