skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Abnormal sensitivity of skin fibroblasts from familial polyposis patients to DNA alkylating agents

Abstract

Fibroblast cell strains derived from different patients all afflicted with genetic predisposing to the development of intestinal polyposis and cancer were tested for their sensitivity to the lethal effects of the DNA alkylating agents methylmethanesulfonate (MMS), ethyl methanesulfonate, N-methyl-N'-nitro-N-nitrosoguanidine, and 4-nitroquinoline 1-oxide. The genetic syndromes studied were: (a) adenomatosis of the colon and rectum only, an autosomal dominant trait; (b) Turcot's syndrome, a rare autosomal recessive polyposis syndrome also characterized by central nervous system tumors; and (c) Gardner's syndrome, an autosomal dominant syndrome which, in addition to intestinal polyposis, is also clinically characterized by osteomas and soft tissue tumors. Fibroblasts from a patient with Turcot's syndrome were hypersensitive to MMS, having a D0 value of 0.24 mM (p less than 0.01) versus the normal average D0 of 0.36 mM and a D10 value of 0.95 mM (p less than 0.01) compared with the normal average value of 1.3 mM. Fibroblasts from the Gardner's syndrome proband were moderately sensitive to MMS, ethyl methanesulfonate, and N-methyl-N'-nitro-N-nitrosoguanidine due to significant differences of D10 values of 0.60 mM (p less than 0.01), 15 mM (p less than 0.01), and 4.8 microM (p less than 0.025), respectively, versus the normal average values of 1.3 mM,more » 28 mM, and 9.4 microM. Fibroblasts from the clinically affected Gardner's syndrome daughter of the proband were significantly more sensitive to MMS treatment, D0 of 0.22 mM (p less than 0.01) versus the normal average D0 of 0.36 mM and a D10 of 0.97 mM (p less than 0.01) versus the normal average. This differential sensitivity to the several DNA alkylating agents suggests that different mechanisms of hypersensitivity to these chemicals may be associated with fibroblasts from the various forms of familial polyposis.« less

Authors:
;
Publication Date:
Research Org.:
Harvard University School of Public Health, Boston, Massachusetts
OSTI Identifier:
5364768
Resource Type:
Journal Article
Resource Relation:
Journal Name: Cancer Res.; (United States); Journal Volume: 42:4
Country of Publication:
United States
Language:
English
Subject:
59 BASIC BIOLOGICAL SCIENCES; DNA; ALKYLATING AGENTS; BIOLOGICAL EFFECTS; CENTRAL NERVOUS SYSTEM; FIBROBLASTS; GENETIC VARIABILITY; INTESTINES; METHYL METHANESULFONATE; NEOPLASMS; NITROSO COMPOUNDS; SENSITIVITY; SKIN; SURVIVAL CURVES; TUMOR CELLS; ANIMAL CELLS; BIOLOGICAL VARIABILITY; BODY; CONNECTIVE TISSUE CELLS; DIGESTIVE SYSTEM; DISEASES; ESTERS; GASTROINTESTINAL TRACT; MUTAGENS; NERVOUS SYSTEM; NUCLEIC ACIDS; ORGANIC COMPOUNDS; ORGANIC NITROGEN COMPOUNDS; ORGANIC SULFUR COMPOUNDS; ORGANS; SOMATIC CELLS; SULFONIC ACID ESTERS; 550901* - Pathology- Tracer Techniques

Citation Formats

Barfknecht, T.R., and Little, J.B. Abnormal sensitivity of skin fibroblasts from familial polyposis patients to DNA alkylating agents. United States: N. p., 1982. Web.
Barfknecht, T.R., & Little, J.B. Abnormal sensitivity of skin fibroblasts from familial polyposis patients to DNA alkylating agents. United States.
Barfknecht, T.R., and Little, J.B. 1982. "Abnormal sensitivity of skin fibroblasts from familial polyposis patients to DNA alkylating agents". United States. doi:.
@article{osti_5364768,
title = {Abnormal sensitivity of skin fibroblasts from familial polyposis patients to DNA alkylating agents},
author = {Barfknecht, T.R. and Little, J.B.},
abstractNote = {Fibroblast cell strains derived from different patients all afflicted with genetic predisposing to the development of intestinal polyposis and cancer were tested for their sensitivity to the lethal effects of the DNA alkylating agents methylmethanesulfonate (MMS), ethyl methanesulfonate, N-methyl-N'-nitro-N-nitrosoguanidine, and 4-nitroquinoline 1-oxide. The genetic syndromes studied were: (a) adenomatosis of the colon and rectum only, an autosomal dominant trait; (b) Turcot's syndrome, a rare autosomal recessive polyposis syndrome also characterized by central nervous system tumors; and (c) Gardner's syndrome, an autosomal dominant syndrome which, in addition to intestinal polyposis, is also clinically characterized by osteomas and soft tissue tumors. Fibroblasts from a patient with Turcot's syndrome were hypersensitive to MMS, having a D0 value of 0.24 mM (p less than 0.01) versus the normal average D0 of 0.36 mM and a D10 value of 0.95 mM (p less than 0.01) compared with the normal average value of 1.3 mM. Fibroblasts from the Gardner's syndrome proband were moderately sensitive to MMS, ethyl methanesulfonate, and N-methyl-N'-nitro-N-nitrosoguanidine due to significant differences of D10 values of 0.60 mM (p less than 0.01), 15 mM (p less than 0.01), and 4.8 microM (p less than 0.025), respectively, versus the normal average values of 1.3 mM, 28 mM, and 9.4 microM. Fibroblasts from the clinically affected Gardner's syndrome daughter of the proband were significantly more sensitive to MMS treatment, D0 of 0.22 mM (p less than 0.01) versus the normal average D0 of 0.36 mM and a D10 of 0.97 mM (p less than 0.01) versus the normal average. This differential sensitivity to the several DNA alkylating agents suggests that different mechanisms of hypersensitivity to these chemicals may be associated with fibroblasts from the various forms of familial polyposis.},
doi = {},
journal = {Cancer Res.; (United States)},
number = ,
volume = 42:4,
place = {United States},
year = 1982,
month = 4
}
  • Neurofibromatosis (NF) is an autosomal dominant disorder associated with various constitutional abnormalities as well as a striking predisposition for malignant and nonmalignant neoplasms, both in cells originating in and not originating in the neural crest. We have examined the sensitivity of cultured skin fibroblasts from patients with neurofibromatosis to several types of DNA damage. Fibroblasts in Dulbecco's modified Eagle's medium were plated at 10(2) to 2 X 10(4) cells per 75 cm2 tissue culture plates, and exposed to various doses of gamma radiation (leads to DNA scission), actinomycin D, or mitomycin C. Cells were reincubated for 15 to 40 daysmore » until surviving colonies exhibited greater than 30-50 cells. Plates were then stained with 1% methylene blue and the colonies counted, with surviving fraction determined relative to plating efficiency. Nine skin fibroblast cell strains from normal individuals were studied as controls. One neurofibromatosis (NF) cell strain, SB23, exhibited normal sensitivity to all three DNA-damaging agents studied in early (7-8) and middle (12-13) in vitro passage. Strain GM0622, on the other hand, exhibited normal sensitivity to the three DNA-damaging agents studied at early passage, but showed a significant decrease in survival after exposure to both gamma radiation (D0 = 106 rad) and actinomycin D (D0 = 0.024 mcg/ml) with increasing passage. Strain GM1639 exhibited decreased survival after actinomycin D exposure at early passage (D0 = 0.017 mcg/ml), with normal survival after exposure to gamma radiation and mitomycin C at the same passage.« less
  • A probabilistic analysis has been developed to assist the binary classification and risk assessment of members of familial colon cancer kindreds. The analysis is based on the microautoradiographic observation of (/sup 3/H)thymidine-labeled epithelial cells in colonic mucosa of the kindred members. From biopsies of colonic mucosa which are labeled with (/sup 3/H)thymidine in vitro, the degree of similarity of each subject's cell-labeling pattern measured over entire crypts was automatically compared to the labeling patterns of high-risk and low-risk reference populations. Each individual was then presumptively classified and assigned to one of the reference populations, and a degree of risk formore » the classification was provided. In carrying out the analysis, a linear score was calculated for each individual relative to each of the reference populations, and the classification was based on the polarity of the score difference; the degree of risk was then quantitated from the magnitude of the score difference. When the method was applied to kindreds having either familial polyposis or familial non-polyposis colon cancer, it effectively segregated individuals affected with disease from others at low risk, with sensitivity and specificity ranging from 71 to 92%. Further application of the method to asymptomatic family members believed to be at 50% risk on the basis of pedigree evaluation revealed a biomodal distribution to nearly zero or full risk. The accuracy and simplicity of this approach and its capability of revealing early stages of abnormal colonic epithelial cell development indicate potential for preclinical screening of subjects at risk in cancer-prone kindreds and for assisting the analysis of modes of inheritance.« less
  • The postultraviolet light (UV) colony-forming ability and DNA repair properties were examined of human skin fibroblasts derived from two groups of donors at high risk of cancer; (a) persons exhibiting sensitivity to sunlight; and (b) persons with conditions possibly associated with an underlying defect in the repair of radiogenic DNA damage. A comparison was made between the effects of far UV (254 nm) and mid UV (313 nm). Biochemical studies performed on strains sensitive to 313-nm UV alone suggest that their unusual photoresponse is not attributable to defective repair of cyclobutyl pyrimidine dimers. Furthermore, our data imply that thymine glycolsmore » are unlikely candidates for the critical lethal lesions in 313-nm UV-sensitive strains. Evidence is presented in support of the contention that mid UV may be partially radiomimetic, thus extending our understanding of the deleterious biological effects of this ubiquitous environmental carcinogen. (JMT)« less
  • The authors reported previously that human cells after neoplastic transformation in culture had acquired an increased susceptibility to chromatid damage induced by x-irradiation during the G2 phase of the cell cycle. Evidence suggested that this results from deficient DNA repair during G2 phase. Cells derived from human tumors also showed enhanced G2-phase chromosomal radiosensitivity. Furthermore, skin fibroblasts from individuals with genetic diseases predisposing to a high risk of cancer, including ataxia-telangiectasia, Bloom syndrome, Fanconi anemia, and xeroderma pigmentosum exhibited enhanced G2-phase chromosomal radiosensitivity. The present study shows that apparently normal skin fibroblasts from individuals with familial cancer--i.e., from families withmore » a history of neoplastic disease--also exhibit enhanced G2-phase chromosomal radiosensitivity. This radiosensitivity appears, therefore, to be associated with both a genetic predisposition to cancer and a malignant neoplastic state. Furthermore, enhanced G2-phase chromosomal radiosensitivity may provide the basis for an assay to detect genetic susceptibility to cancer.« less
  • Normal human fibroblast cells have not been reported to escape crisis--that is they die after about 24 doublings in culture. The authors have been studying the growth properties of skin fibroblast cells from persons in families with familial adenopolyposis of the colon (FAP). An individual hemizygous at the FAP locus will develop hyperplasia of the colonic epithelium followed by colonic polyps, both at an early age. Polyps themselves still retain a single functional FAP allele. A mutation or deletion in this allele in a polyp is hypothesized to lead to further loss of growth control; thus, a tumor is formed.more » They found that the in vitro life-span of skin fibroblast cells from FAP individuals and from some asymptomatic children were markedly extended when compared with normal individuals.« less