skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Studies of Mn valence conversion and oxygen vacancies in La{sub 1{minus}x}Ca{sub x}MnO{sub 3{minus}y} using electron energy-loss spectroscopy

Journal Article · · Applied Physics Letters
DOI:https://doi.org/10.1063/1.119171· OSTI ID:529993
; ;  [1];  [2]
  1. School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0245 (United States)
  2. Advanced Technology Materials, Inc., Danbury, Connecticut 06810 (United States)

Using the white line intensities, electron energy-loss spectroscopy in a transmission electron microscope has been employed to characterize the valence conversion and oxygen vacancies in La{sub 1{minus}x}Ca{sub x}MnO{sub 3{minus}y}. For a nominal doping composition x=0.33, the ratio of Mn{sup 4+} to Mn{sup 3+} is determined to be more than 0.25 but less than 0.5, and the content of oxygen vacancy y is no more than 0.065 (equivalent to 2.2 at.{percent} of the oxygen content). At y{sub max}=0.065, 60{percent} of the residual charge introduced by Ca doping is balanced by the conversion of Mn{sup 3+}to Mn{sup 4+} and 40{percent} by oxygen vacancy. {copyright} {ital 1997 American Institute of Physics.}

OSTI ID:
529993
Journal Information:
Applied Physics Letters, Vol. 70, Issue 25; Other Information: PBD: Jun 1997
Country of Publication:
United States
Language:
English