skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Reactor static optimization with integral system equations. [CITATION Code]

Abstract

An algorithm is developed for the optimality analysis of thermal reactor assemblies with a mathematical programming method. The neutron balances of the systems under consideration are transformed into integral equations by using Green's functions. Two-group, two-dimensional Green's functions for the neutron diffusion equations have been derived. A nodal method has been used to transform integral system equations into equivalent matrix eigenvalue problems. A benchmark problem solved with both the nodal method and a finite difference code ''CITATION'' establishes the validity of the integral system equations. Possible ways of improving computed results are discussed. Only 50 mesh points are required in nodal method to obtain one percent error in the eigenvalue in the benchmark calculation. The same accuracy requires 2500 mesh points in the ''CITATION'' code. With the nodal method described above, a two-dimensional maximum power problem for a thermal reactor is solved by treating the fissile material concentration as the controller. Two numerical examples are given.

Authors:
Publication Date:
Research Org.:
Illinois Univ., Urbana (USA)
OSTI Identifier:
5276184
Resource Type:
Thesis/Dissertation
Resource Relation:
Other Information: Thesis (Ph.D.)
Country of Publication:
United States
Language:
English
Subject:
22 GENERAL STUDIES OF NUCLEAR REACTORS; COMPUTER CODES; C CODES; THERMAL REACTORS; OPTIMIZATION; GREEN FUNCTION; INTEGRAL EQUATIONS; MATHEMATICAL MODELS; EQUATIONS; FUNCTIONS; REACTORS; 220100* - Nuclear Reactor Technology- Theory & Calculation

Citation Formats

Sheen, Y M. Reactor static optimization with integral system equations. [CITATION Code]. United States: N. p., 1980. Web.
Sheen, Y M. Reactor static optimization with integral system equations. [CITATION Code]. United States.
Sheen, Y M. 1980. "Reactor static optimization with integral system equations. [CITATION Code]". United States.
@article{osti_5276184,
title = {Reactor static optimization with integral system equations. [CITATION Code]},
author = {Sheen, Y M},
abstractNote = {An algorithm is developed for the optimality analysis of thermal reactor assemblies with a mathematical programming method. The neutron balances of the systems under consideration are transformed into integral equations by using Green's functions. Two-group, two-dimensional Green's functions for the neutron diffusion equations have been derived. A nodal method has been used to transform integral system equations into equivalent matrix eigenvalue problems. A benchmark problem solved with both the nodal method and a finite difference code ''CITATION'' establishes the validity of the integral system equations. Possible ways of improving computed results are discussed. Only 50 mesh points are required in nodal method to obtain one percent error in the eigenvalue in the benchmark calculation. The same accuracy requires 2500 mesh points in the ''CITATION'' code. With the nodal method described above, a two-dimensional maximum power problem for a thermal reactor is solved by treating the fissile material concentration as the controller. Two numerical examples are given.},
doi = {},
url = {https://www.osti.gov/biblio/5276184}, journal = {},
number = ,
volume = ,
place = {United States},
year = {Tue Jan 01 00:00:00 EST 1980},
month = {Tue Jan 01 00:00:00 EST 1980}
}

Thesis/Dissertation:
Other availability
Please see Document Availability for additional information on obtaining the full-text document. Library patrons may search WorldCat to identify libraries that hold this thesis or dissertation.

Save / Share: