skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Heat flow from the West African shield

Abstract

The heat flow over Precambrian shields is generally lower than over other continental provinces. Previous observations at 9 sites of the West African shield have shown that heat flow ranges from 20 mW m/sup -2/ in Niger to 38-42 mW m/sup -2/ in Liberia, Ghana and Nigeria. Since some of these values are lower than expected for Precambrian shields, it is important to find out whether or not they are representative of the entire shield before trying to derive its thermal structure. In this paper, we present new heat flow determinations from seven sites of the West African shield. These indicate that the surface heat flow is comparable with that of other Precambrian shields in the world.

Authors:
; ; ;
Publication Date:
Research Org.:
Centre Gaeologique et Geophysique, Montpellier, France
OSTI Identifier:
5243228
Resource Type:
Journal Article
Resource Relation:
Journal Name: Geophys. Res. Lett.; (United States); Journal Volume: 12:9
Country of Publication:
United States
Language:
English
Subject:
15 GEOTHERMAL ENERGY; AFRICA; TEMPERATURE SURVEYS; GEOTHERMAL SYSTEMS; GHANA; HEAT FLOW; LIBERIA; NIGER; NIGERIA; PRECAMBRIAN ERA; TEMPERATURE MEASUREMENT; DEVELOPING COUNTRIES; GEOLOGIC AGES; GEOPHYSICAL SURVEYS; SURVEYS; 150202* - Geology & Hydrology of Geothermal Systems- Non-USA- (-1989)

Citation Formats

Brigaud, F., Lucazeau, F., Ly, S., and Sauvage, J.F. Heat flow from the West African shield. United States: N. p., 1985. Web. doi:10.1029/GL012i009p00549.
Brigaud, F., Lucazeau, F., Ly, S., & Sauvage, J.F. Heat flow from the West African shield. United States. doi:10.1029/GL012i009p00549.
Brigaud, F., Lucazeau, F., Ly, S., and Sauvage, J.F. 1985. "Heat flow from the West African shield". United States. doi:10.1029/GL012i009p00549.
@article{osti_5243228,
title = {Heat flow from the West African shield},
author = {Brigaud, F. and Lucazeau, F. and Ly, S. and Sauvage, J.F.},
abstractNote = {The heat flow over Precambrian shields is generally lower than over other continental provinces. Previous observations at 9 sites of the West African shield have shown that heat flow ranges from 20 mW m/sup -2/ in Niger to 38-42 mW m/sup -2/ in Liberia, Ghana and Nigeria. Since some of these values are lower than expected for Precambrian shields, it is important to find out whether or not they are representative of the entire shield before trying to derive its thermal structure. In this paper, we present new heat flow determinations from seven sites of the West African shield. These indicate that the surface heat flow is comparable with that of other Precambrian shields in the world.},
doi = {10.1029/GL012i009p00549},
journal = {Geophys. Res. Lett.; (United States)},
number = ,
volume = 12:9,
place = {United States},
year = 1985,
month = 9
}
  • The Sahel climate system had experienced one of the strongest interdecadal climate variabilities and the longest drought on the planet in the twentieth century. Most modeling studies on the decadal variability of the Sahel climate so far have focused on the role of anomalies in either sea surface temperature (SST), land surface processes, or aerosols concentration. The Second West African Monsoon Modeling and Evaluation Project Experiment (WAMME II) is designed to improve understanding of the possible roles and feedback of SST, land use land cover change (LULCC), and aerosols forcings in the Sahel climate system at seasonal to decadal scales.more » The WAMME II strategy is to apply observationally based anomaly forcing, i.e., “idealized but realistic” forcing, in simulations by general circulation models’ (GCMs) and regional climate models’ (RCMs) to test the relative impacts of such forcings in producing/amplifying the Sahelian seasonal and decadal climate variability, including the 20th century drought. To test individual ocean’s SST effect, a special approach in the experimental design is taken to avoid undermine its effect. This is the first multi-model experiment specifically designed to simultaneously evaluate relative contributions of multiple-external forcings to the Sahel drought. This paper presents the major results and preliminary findings of the WAMME II SST experiment, including each ocean’s contribution to the global SST effect, as well as comparison of the SST effect with the LULCC effect. The common empirical orthogonal functions and other analyses are applied to assess and comprehend the discrepancies among the models. In general, the WAMME II models have reached a consensus on SST’s major contribution to the great Sahel drought and show that with the maximum possible SST forcing, it can produce up to 60% of the absolute amount of precipitation difference between the 1980s and the 1950s. This paper has 3 also delineated the role of SSTs in triggering and maintaining the Sahel drought, suggesting a potential predictability of WAM development linked to SST. Among different ocean basins, the Pacific and Indian Ocean SSTs have the greatest impact on the 1980s drought. The WAMME II, however, fails to reach a consensus on the role of the Mediterranean Sea SST. The changes in circulation, moisture flux convergence, and associated surface energy balances are the main mechanisms for the SST effect. The paper also compares the SST effect with the LULCC effects. It is shown that the prescribed land forcing produces about 40% of the precipitation difference between the 1980s and the 1950s, which is less than SST contribution but still of first order in the Sahel climate system. The role of land surface processes in responding to and amplifying the drought has also been identified. The results demonstrate that catastrophic consequences likely occur in the regional climate when SST anomalies in individual ocean basins and in land conditions combine synergistically to favor drought. Due to limited ensemble members, aerosol effects are not compared. Since the SST and land forcing in the real world are likely smaller than specified in this study, further investigations on the effects of aerosols as well as of other external forcings, such as greenhouse gases, and of atmospheric internal variability, are necessary. Moreover, although the WAMEE II models support a general consensus on SST and LULCC effects, there are still large discrepancies in how these models produce the Sahel drought in the 1980s. Better atmospheric observational and analysis data including more processes and components are necessary to validate and constrain models, and to guide further model development and improvement.« less
  • Uncorrected heat flow in iron formation rocks from three areas within the Liberian part of the West African Shield ranges from 50 to more than 80 mW m/sup -2/. When corrections are applied for topography and refraction, the range of heat flow is narrowed to between 38 and 42 mW m/sup -2/. In comparison with heat flows from other parts of the West African Craton, these values are consistent with preliminary results from Ghana (42 +- 8 mW m/sup -2/) and Nigeria (38 +- 2 mW /sup -2/) but are somewhat higher than values from Niger (20 mW m/sup -2/)more » and neighboring Sierra Leone (26 mW m/sup -2/). The Liberian values are significantly lower than the heat flow offshore in the equatorial Atlantic Ocean (58 +- 8 mW m/sup -2/), suggesting large lateral temperature gradients within the lithosphere near the coast. Values of heat production from outcrops of crystalline basement rocks near the holes are between 2 and 2.3 ..mu..W m/sup -3/. A heat-flow/heat-production relation cannot be established because of the small range of values; however, assuming a 'characteristic depth' of 8 km (similar to the North American Craton) the reduced heat flow of from 20 to 25 mW m/sup -2/ is consistent with that from other Precambrian shields.« less
  • Two Late Proterozoic granitic bodies from the Eastern Desert of Egypt, the ca. 578 Ma Nakhil and the ca. 595 Ma Aswan granites, provide insights into processes of crust formation in the Arabian-Nubian shield. Evidence for involvement of an older crustal component in the formation of the Nakhil granite includes (1) U/Pb zircon data that establish a crystallization age of 578 {plus minus} 15 Ma and indicate the presence of inherited zircons possibly as old as 1.6 Ga; (2) an elevated model initial {sup 87}Sr/{sup 86}Sr (0.7136); and (3) an elevated initial {sup 207}Pb/{sup 204}Pb (15.561) relative to model mantlemore » compositions at 578 Ma. Evidence for involvement of an older crustal component in the Aswan granite comes from the elevated initial {sup 207}Pb/{sup 204}Pb (15.611). In contrast, extensive crustal contamination is not reflected in the high initial {epsilon}{sub Nd} (+5.7) for the Nakhil and the low initial {sup 87}Sr/{sup 86}Sr (0.7029) for the Aswan granite. The contrasting inferences from the different isotopic systems can be explained by the high whole-rock Nd and Sr concentration for the the Nakhil (87 ppm Nd) and the Aswan (173 ppm Sr) granites, respectively, that suggest that the Nd and Sr isotopic composition of the older component has been overshadowed by the more primitive material. Similar contrasts in Pb, Sr, and Nd isotopic data from the eastern and western shield margins can be interpreted in the same manner and might suggest widespread involvement of older crustal components in the formation of the Late Proterozoic Arabian-Nubian shield.« less