skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: The microstructure and mechanical reliability of alumina scales and coatings

Conference ·
OSTI ID:520703

Alumina scales on iron-aluminides (Fe{sub 3}Al-based) and NiCrAl- based alloys were characterized in order to develop the knowledge to control the oxidation performance of alloys by controlling the microstructure and microchemistry of their scales. Plasma-deposited amorphous alumina coatings on iron-aluminides were used to study phase transformations, transport processes in the scales, and S segregation to the scale/metal interface. It was found that during heat treatment in absence of oxidation, amorphous coatings first transform to {gamma}-Al{sub 2}O{sub 3} and eventually {alpha}-Al{sub 2}O{sub 3} nucleates at the scale/metal interface. Sulfur from the Zr- free alloy segregates to the scale/metal interface during heat treatment. Thermally grown scales on Zr-doped iron-aluminides were compared to those formed after oxidation of a specimen with an alumina coating. Microstructural and gravimetric results showed that the primarily amorphous alumina coating promoted the nucleation and growth of metastable alumina phases, which resulted in more rapid oxidation. The thermally grown oxide was found on top of the coating. The NiCrAl-based alloys formed columnar alumina scales underneath a layer of mixed oxides. Segregation of alloying elements like Y, Hf, and At was found at both oxide grain boundaries and scale/metal interfaces.

Research Organization:
Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
Sponsoring Organization:
USDOE Office of Energy Research, Washington, DC (United States)
DOE Contract Number:
AC05-96OR22464
OSTI ID:
520703
Report Number(s):
CONF-9705115-3; ON: DE97008447
Resource Relation:
Conference: 11. annual conference on fossil energy materials, Knoxville, TN (United States), 20-22 May 1997; Other Information: PBD: [1997]
Country of Publication:
United States
Language:
English