skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Electrochemical photovoltaic cells. Project 65021 quarterly technical progress report, October 15, 1979-January 15, 1980

Technical Report ·
DOI:https://doi.org/10.2172/5197399· OSTI ID:5197399

During the third quarter of this program, liquid junction devices based upon the semiconductors MoSe/sub 2/, MoS/sub 2/, GaAs, and CdSe have been evaluated. Lifetime testing of MoSe/sub 2/ and MoS/sub 2/ materials in acidic halogen electrolytes at constant current densities of 5 mA/cm/sup 2/ have shown excellent stability to date. For MoSe/sub 2/ single crystals in the electrolyte 1M HBr + 1M Br/sub 2/, short-circuit currents of 63 mA/cm/sup 2/ were achieved with a power conversion efficiency of 6.7% for 200 mW/cm/sup 2/ xenon light illumination. Transient potentiostatic measurements made on MoSe/sub 2/ in this electrolyte indicated little diffusion control, with exchange currents being of the order of 1 to 10 mA/cm/sup 2/. Good photoresponse of MoS/sub 2/ has been observed in 1M HBr + 1M Br/sub 2/. The performance of the natural crystal is comparable to the performance of a single-crystal MoS/sub 2/ in this electrolyte. CdSe thermally evaporated onto porous titanium gave efficiencies of about 4% with 100 mW/cm/sup 2/ xenon illumination. Experimental work was initiated on the dye sensitization of Fe/sub 2/O/sub 3/ and TiO/sub 2/ materials. Of the twelve dyes evaluated, little enhancement of the photoresponse of these materials was noted. Solid-state photoelectrochemical cells have been fabricated, based upon LiI. Cells of the configuration - cond. glass CdSe/LiI + PbI/sub 2//LiI/LiI + C + PbI/sub 2//cond. glass - were fabricated. Photoresponses up to 150 mV were observed.

Research Organization:
Institute of Gas Technology, Chicago, IL (United States)
DOE Contract Number:
EG-77-C-01-4042
OSTI ID:
5197399
Report Number(s):
DSE-4042-T26
Country of Publication:
United States
Language:
English