skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Radiation effects and metalloproteins studied by x-ray photoelectron spectroscopy

Technical Report ·
DOI:https://doi.org/10.2172/5190083· OSTI ID:5190083

X-ray photoelectron spectroscopy (XPS) is used to study the bonding structure at the iron site of cytochrome c and the bonding of rare earth ions to the phosphate oxygens of ATP. Radiation effects are studied on several amino acid and simple peptide model systems. The emission spectrum of the x-ray source is calculated from literature references. The distributions of photon energy as a function of photon frequency and as a function of take-off angle are obtained. From these distributions, the radiation dose absorbed by an organic sample is found to be 10/sup 6/ rads/sec. The C 1s and N 1s spectra of amino acids and peptides are studied to characterize an internal reference standard for protein XPS spectra. Samples of native cytochrome c prepared from solutions of pH 1.5, 3, 7, and 11 are studied. Control samples include porphyrin cytochrome c (PCC), the metal free analogue of the native protein, and microperoxidase (MP), a mixture of heme peptides derived from the peptic digestion of cytochrome c. These samples show two S 2p peaks. The first peak has a binding energy (BE) of 163 eV, which corresponds to the S containing amino acids; the second peak is shifted to 167 eV. This large shift may be the result of Fe-S binding, or oxidation, or both. Low spin ferricytochrome c and ferri-MP were found to have Fe 3p BE's that are unusually low (51 eV) compared to other ferric compounds (54 to 58 eV) and even Fe metal (53 eV). X-ray crystal structures of these compounds show that low spin heme Fe lies in the porphyrin plane; while, high spin heme Fe is displaced above the plane. The N 1s and P 2p spectra of ATP show no change except slight broadening when Nd/sup 3 +/ is substituted for Na/sup +/. Thus, there is no inconsistency with proposals that rare earth ions might be useful as substitutes for alkali metal ions and alkaline earth ions in proteins.

Research Organization:
Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
DOE Contract Number:
W-7405-ENG-48
OSTI ID:
5190083
Report Number(s):
LBL-4677; TRN: 78-006092
Resource Relation:
Other Information: Thesis
Country of Publication:
United States
Language:
English

Similar Records