skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: High energy electron beam joining of ceramic components

Conference ·
DOI:https://doi.org/10.2172/554875· OSTI ID:513497

High strength, hermetic braze joints between ceramic components have been produced using high energy electron beams. With a penetration depth into a typical ceramic of {approximately}1 cm for a 10 MeV electron beam, this method provides the capability for rapid, transient brazing operations where temperature control of critical components is essential. The method deposits energy directly into a buried joint, allowing otherwise inaccessible interfaces to be brazed. Because of transient heating, higher thermal conductivity, lower heat capacity, and lower melting temperature of braze metals relative to the ceramic materials, a pulsed high power beam can melt a braze metal without producing excessive ceramic temperatures. We have demonstrated the feasibility of this process related to ceramic coupons as well as ceramic and glass tubes. The transient thermal response was predicted, using as input the energy absorption predicted from the coupled electron-photon transport analysis. The joining experiments were conducted with an RF Linac accelerator at 10-13 MV. The repetition rate of the pulsed beam was varied between 8 and 120 Hz, the average beam current was varied between 8 and 120 microamps, and the power was varied up to 1.5 kW. These beam parameters gave a beam power density between 0.2 to 2 kW/cm{sup 2}. The duration of the joining runs varied from 5 to 600 sec. Joining experiments have provided high strength between alumina - alumina and alumina - cermet joints in cylindrical geometry. These joints provided good hermetic seals. A series of tests was conducted to determine the minimum beam power and exposure time for producing, a hermetic seal.

Research Organization:
Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
Sponsoring Organization:
USDOE, Washington, DC (United States)
DOE Contract Number:
AC04-94AL85000
OSTI ID:
513497
Report Number(s):
SAND-97-1546C; CONF-9706113-11; ON: DE97006942; TRN: 97:004795
Resource Relation:
Conference: 11. IEEE international pulsed power conference, Baltimore, MD (United States), 29 Jun - 2 Jul 1997; Other Information: PBD: 1997
Country of Publication:
United States
Language:
English