skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Pressure tuning of strains in semiconductor heterostructures: (ZnSe epilayer)/(GaAs epilayer)

Abstract

The heavy-hole and light-hole excitons of a pseudomorphic ZnSe film grown on a GaAs epilayer by molecular-beam epitaxy, are studied as a function of applied hydrostatic pressure using photomodulated reflectance spectroscopy. At ambient pressure, the signature in the spectrum due to the heavy-hole exciton occurs at an energy lower than that of the light-hole exciton, a consequence of the compressive biaxial strain in ZnSe due to its lattice mismatch with GaAs. As the pressure is increased, the two signatures approach each other in energy and coalesce at 36.2 kbar. The difference in the compressibility of ZnSe from that of GaAs generates a tensile strain that progressively compensates the lattice-mismatch-induced compressive strain and finally, at 36.2 kbar, the heterostructure is strain free. Beyond this pressure, the strain in ZnSe transforms from biaxial compression to biaxial tension, the light-hole signature now occurring at the lower energy. The transformation of strains via pressure tuning is continuous and reversible. The separation between the heavy-hole and light-hole signatures is superlinear in pressure, suggestive of a pressure-dependent shear-deformation-potential constant.

Authors:
; ;  [1]
  1. School of Electrical Engineering, Purdue University, West Lafayette, Indiana (USA)
Publication Date:
OSTI Identifier:
5096307
DOE Contract Number:  
FG02-89ER45402
Resource Type:
Journal Article
Journal Name:
Physical Review, B: Condensed Matter; (United States)
Additional Journal Information:
Journal Volume: 44:20; Journal ID: ISSN 0163-1829
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; GALLIUM ARSENIDES; STRAINS; ZINC SELENIDES; EPITAXY; EXCITONS; HETEROJUNCTIONS; LATTICE PARAMETERS; PRESSURE DEPENDENCE; VERY HIGH PRESSURE; VISIBLE SPECTRA; ARSENIC COMPOUNDS; ARSENIDES; CHALCOGENIDES; GALLIUM COMPOUNDS; JUNCTIONS; PNICTIDES; QUASI PARTICLES; SELENIDES; SELENIUM COMPOUNDS; SEMICONDUCTOR JUNCTIONS; SPECTRA; ZINC COMPOUNDS; 360603* - Materials- Properties

Citation Formats

Rockwell, B, Chandrasekhar, H R, Chandrasekhar, M., and Gunshor, R L. Pressure tuning of strains in semiconductor heterostructures: (ZnSe epilayer)/(GaAs epilayer). United States: N. p., 1991. Web. doi:10.1103/PhysRevB.44.11307.
Rockwell, B, Chandrasekhar, H R, Chandrasekhar, M., & Gunshor, R L. Pressure tuning of strains in semiconductor heterostructures: (ZnSe epilayer)/(GaAs epilayer). United States. https://doi.org/10.1103/PhysRevB.44.11307
Rockwell, B, Chandrasekhar, H R, Chandrasekhar, M., and Gunshor, R L. 1991. "Pressure tuning of strains in semiconductor heterostructures: (ZnSe epilayer)/(GaAs epilayer)". United States. https://doi.org/10.1103/PhysRevB.44.11307.
@article{osti_5096307,
title = {Pressure tuning of strains in semiconductor heterostructures: (ZnSe epilayer)/(GaAs epilayer)},
author = {Rockwell, B and Chandrasekhar, H R and Chandrasekhar, M. and Gunshor, R L},
abstractNote = {The heavy-hole and light-hole excitons of a pseudomorphic ZnSe film grown on a GaAs epilayer by molecular-beam epitaxy, are studied as a function of applied hydrostatic pressure using photomodulated reflectance spectroscopy. At ambient pressure, the signature in the spectrum due to the heavy-hole exciton occurs at an energy lower than that of the light-hole exciton, a consequence of the compressive biaxial strain in ZnSe due to its lattice mismatch with GaAs. As the pressure is increased, the two signatures approach each other in energy and coalesce at 36.2 kbar. The difference in the compressibility of ZnSe from that of GaAs generates a tensile strain that progressively compensates the lattice-mismatch-induced compressive strain and finally, at 36.2 kbar, the heterostructure is strain free. Beyond this pressure, the strain in ZnSe transforms from biaxial compression to biaxial tension, the light-hole signature now occurring at the lower energy. The transformation of strains via pressure tuning is continuous and reversible. The separation between the heavy-hole and light-hole signatures is superlinear in pressure, suggestive of a pressure-dependent shear-deformation-potential constant.},
doi = {10.1103/PhysRevB.44.11307},
url = {https://www.osti.gov/biblio/5096307}, journal = {Physical Review, B: Condensed Matter; (United States)},
issn = {0163-1829},
number = ,
volume = 44:20,
place = {United States},
year = {Fri Nov 15 00:00:00 EST 1991},
month = {Fri Nov 15 00:00:00 EST 1991}
}