skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Gender differences in age effect on brain atrophy measured by magnetic resonance imaging

Abstract

A prospective sample of 69 healthy adults, age range 18-80 years, was studied with magnetic resonance imaging scans of the entire cranium. Volumes were obtained by a segmentation algorithm that uses proton density and T{sub 2} pixel values to correct field inhomogeneities (shading). Average ({plus minus}SD) brain volume, excluding cerebellum, was 1090.91 ml and cerebrospinal fluid (DSF) volume was 127.91 ml. Brain volume was higher (by 5 ml) in the right hemisphere. Men had 91 ml higher brain and 20 ml higher CSF volume than women. Age was negatively correlated with brain volume and positively correlated with CSF volume. The slope fo the regression line with age for CSF was steeper for men than women. This difference in slopes was significant for sulca but not ventricular, CSF. The greatest amount of atrophy in elderly men was in the left hemisphere, whereas is women age effects were symmetric. The findings may point to neuroanatomic substrates of hemispheric specialization and gender differences in age-related changes in brain function. They suggest that women are less vulnerable to age-related changes in mental abilities, whereas men are particularly susceptible to aging effects on left hemispheric functions.

Authors:
; ; ; ; ; ; ; ; ; ; ;  [1]
  1. (Univ. of Pennsylvania, Philadelphia (United States))
Publication Date:
OSTI Identifier:
5028198
Resource Type:
Journal Article
Resource Relation:
Journal Name: Proceedings of the National Academy of Sciences of the United States of America; (United States); Journal Volume: 88:7
Country of Publication:
United States
Language:
English
Subject:
62 RADIOLOGY AND NUCLEAR MEDICINE; BRAIN; NUCLEAR MAGNETIC RESONANCE; CEREBROSPINAL FLUID; VOLUME; ADULTS; AGE DEPENDENCE; ATROPHY; SEX DEPENDENCE; AGE GROUPS; BIOLOGICAL MATERIALS; BODY; BODY FLUIDS; CENTRAL NERVOUS SYSTEM; MAGNETIC RESONANCE; MATERIALS; NERVOUS SYSTEM; ORGANS; PATHOLOGICAL CHANGES; RESONANCE; 550601* - Medicine- Unsealed Radionuclides in Diagnostics

Citation Formats

Gur, R.C., Mozley, P.D., Resnick.S.M., Gottlieb, G.L., Kohn, M., Zimmerman, R., Herman, G., Atlas, S., Grossman, R., Berretta, D., Erwin, R., and Gur, R.E.. Gender differences in age effect on brain atrophy measured by magnetic resonance imaging. United States: N. p., 1991. Web. doi:10.1073/pnas.88.7.2845.
Gur, R.C., Mozley, P.D., Resnick.S.M., Gottlieb, G.L., Kohn, M., Zimmerman, R., Herman, G., Atlas, S., Grossman, R., Berretta, D., Erwin, R., & Gur, R.E.. Gender differences in age effect on brain atrophy measured by magnetic resonance imaging. United States. doi:10.1073/pnas.88.7.2845.
Gur, R.C., Mozley, P.D., Resnick.S.M., Gottlieb, G.L., Kohn, M., Zimmerman, R., Herman, G., Atlas, S., Grossman, R., Berretta, D., Erwin, R., and Gur, R.E.. 1991. "Gender differences in age effect on brain atrophy measured by magnetic resonance imaging". United States. doi:10.1073/pnas.88.7.2845.
@article{osti_5028198,
title = {Gender differences in age effect on brain atrophy measured by magnetic resonance imaging},
author = {Gur, R.C. and Mozley, P.D. and Resnick.S.M. and Gottlieb, G.L. and Kohn, M. and Zimmerman, R. and Herman, G. and Atlas, S. and Grossman, R. and Berretta, D. and Erwin, R. and Gur, R.E.},
abstractNote = {A prospective sample of 69 healthy adults, age range 18-80 years, was studied with magnetic resonance imaging scans of the entire cranium. Volumes were obtained by a segmentation algorithm that uses proton density and T{sub 2} pixel values to correct field inhomogeneities (shading). Average ({plus minus}SD) brain volume, excluding cerebellum, was 1090.91 ml and cerebrospinal fluid (DSF) volume was 127.91 ml. Brain volume was higher (by 5 ml) in the right hemisphere. Men had 91 ml higher brain and 20 ml higher CSF volume than women. Age was negatively correlated with brain volume and positively correlated with CSF volume. The slope fo the regression line with age for CSF was steeper for men than women. This difference in slopes was significant for sulca but not ventricular, CSF. The greatest amount of atrophy in elderly men was in the left hemisphere, whereas is women age effects were symmetric. The findings may point to neuroanatomic substrates of hemispheric specialization and gender differences in age-related changes in brain function. They suggest that women are less vulnerable to age-related changes in mental abilities, whereas men are particularly susceptible to aging effects on left hemispheric functions.},
doi = {10.1073/pnas.88.7.2845},
journal = {Proceedings of the National Academy of Sciences of the United States of America; (United States)},
number = ,
volume = 88:7,
place = {United States},
year = 1991,
month = 4
}
  • Purpose: After radiation therapy (RT) to the brain, patients often experience memory impairment, which may be partially mediated by damage to the hippocampus. Hippocampal sparing in RT planning is the subject of recent and ongoing clinical trials. Calculating appropriate hippocampal dose constraints would be improved by efficient in vivo measurements of hippocampal damage. In this study we sought to determine whether brain RT was associated with dose-dependent hippocampal atrophy. Methods and Materials: Hippocampal volume was measured with magnetic resonance imaging (MRI) in 52 patients who underwent fractionated, partial brain RT for primary brain tumors. Study patients had high-resolution, 3-dimensional volumetric MRI beforemore » and 1 year after RT. Images were processed using software with clearance from the US Food and Drug Administration and Conformité Européene marking for automated measurement of hippocampal volume. Automated results were inspected visually for accuracy. Tumor and surgical changes were censored. Mean hippocampal dose was tested for correlation with hippocampal atrophy 1 year after RT. Average hippocampal volume change was also calculated for hippocampi receiving high (>40 Gy) or low (<10 Gy) mean RT dose. A multivariate analysis was conducted with linear mixed-effects modeling to evaluate other potential predictors of hippocampal volume change, including patient (random effect), age, hemisphere, sex, seizure history, and baseline volume. Statistical significance was evaluated at α = 0.05. Results: Mean hippocampal dose was significantly correlated with hippocampal volume loss (r=−0.24, P=.03). Mean hippocampal volume was significantly reduced 1 year after high-dose RT (mean −6%, P=.009) but not after low-dose RT. In multivariate analysis, both RT dose and patient age were significant predictors of hippocampal atrophy (P<.01). Conclusions: The hippocampus demonstrates radiation dose–dependent atrophy after treatment for brain tumors. Quantitative MRI is a noninvasive imaging technique capable of measuring radiation effects on intracranial structures. This technique could be investigated as a potential biomarker for development of reliable dose constraints for improved cognitive outcomes.« less
  • No abstract prepared.
  • Purpose: Brain necrosis or other subacute iatrogenic reactions has been recognized as a potential complication of radiotherapy (RT), although the possible synergistic effects of high-dose chemotherapy and RT might have been underestimated. Methods and Materials: We reviewed the clinical and radiologic data of 49 consecutive children with malignant brain tumors treated with high-dose thiotepa and autologous hematopoietic stem cell rescue, preceded or followed by RT. The patients were assessed for neurocognitive tests to identify any correlation with magnetic resonance imaging (MRI) anomalies. Results: Of the 49 children, 18 (6 of 25 with high-grade gliomas and 12 of 24 with primitivemore » neuroectodermal tumors) had abnormal brain MRI findings occurring a median of 8 months (range, 2-39 months) after RT and beginning to regress a median of 13 months (range, 2-26 months) after onset. The most common lesion pattern involved multiple pseudonodular, millimeter-size, T{sub 1}-weighted unevenly enhancing, and T{sub 2}-weighted hyperintense foci. Four patients with primitive neuroectodermal tumors also had subdural fluid leaks, with meningeal enhancement over the effusion. One-half of the patients had symptoms relating to the new radiographic findings. The MRI lesion-free survival rate was 74% {+-} 6% at 1 year and 57% {+-} 8% at 2 years. The number of marrow ablative courses correlated significantly to the incidence of radiographic anomalies. No significant difference was found in intelligent quotient scores between children with and without radiographic changes. Conclusion: Multiple enhancing cerebral lesions were frequently seen on MRI scans soon after high-dose chemotherapy and RT. Such findings pose a major diagnostic challenge in terms of their differential diagnosis vis-a-vis recurrent tumor. Their correlation with neurocognitive results deserves further investigation.« less
  • Anisotropy of biological tissues is a low-frequency phenomenon that is associated with the function and structure of cell membranes. Imaging of anisotropic conductivity has potential for the analysis of interactions between electromagnetic fields and biological systems, such as the prediction of current pathways in electrical stimulation therapy. To improve application to the clinical environment, precise approaches are required to understand the exact responses inside the human body subjected to the stimulated currents. In this study, we experimentally evaluate the anisotropic conductivity tensor distribution of canine brain tissues, using a recently developed diffusion tensor-magnetic resonance electrical impedance tomography method. At lowmore » frequency, electrical conductivity of the biological tissues can be expressed as a product of the mobility and concentration of ions in the extracellular space. From diffusion tensor images of the brain, we can obtain directional information on diffusive movements of water molecules, which correspond to the mobility of ions. The position dependent scale factor, which provides information on ion concentration, was successfully calculated from the magnetic flux density, to obtain the equivalent conductivity tensor. By combining the information from both techniques, we can finally reconstruct the anisotropic conductivity tensor images of brain tissues. The reconstructed conductivity images better demonstrate the enhanced signal intensity in strongly anisotropic brain regions, compared with those resulting from previous methods using a global scale factor.« less
  • Purpose: To determine the influence of magnetic-resonance-imaging (MRI)-vs. computed-tomography (CT)-based prostate and normal structure delineation on the dose to the target and organs at risk during proton therapy. Methods and Materials: Fourteen patients were simulated in the supine position using both CT and T2 MRI. The prostate, rectum, and bladder were delineated on both imaging modalities. The planning target volume (PTV) was generated from the delineated prostates with a 5-mm axial and 8-mm superior and inferior margin. Two plans were generated and analyzed for each patient: an MRI plan based on the MRI-delineated PTV, and a CT plan based onmore » the CT-delineated PTV. Doses of 78 Gy equivalents (GE) were prescribed to the PTV. Results: Doses to normal structures were lower when MRI was used to delineate the rectum and bladder compared with CT: bladder V50 was 15.3% lower (p = 0.04), and rectum V50 was 23.9% lower (p = 0.003). Poor agreement on the definition of the prostate apex was seen between CT and MRI (p = 0.007). The CT-defined prostate apex was within 2 mm of the apex on MRI only 35.7% of the time. Coverage of the MRI-delineated PTV was significantly decreased with the CT-based plan: the minimum dose to the PTV was reduced by 43% (p < 0.001), and the PTV V99% was reduced by 11% (p < 0.001). Conclusions: Using MRI to delineate the prostate results in more accurate target definition and a smaller target volume compared with CT, allowing for improved target coverage and decreased doses to critical normal structures.« less