skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Molecular statics calculations of proton binding to goethite surfaces: A new approach to estimation of stability constants for multisite surface complexation models

Journal Article · · Geochimica et Cosmochimica Acta
; ;  [1]
  1. Pacific Northwest National Lab., Richland, WA (United States)

A new approach to estimating stability constants for proton binding in multisite surface complexation models is presented. The method is based on molecular statics computation of energies for the formation of proton vacancies and interstitials in ideal periodic slabs representing the (100), (110), (010), (001), and (021) surfaces of goethite. Gas-phase energies of clusters representing the hydrolysis products of ferric iron are calculated using the same potential energy functions used for the surface. These energies are linearly related to the hydrolysis constants for ferric iron in aqueous solution. Stability constants for proton binding at goethite surfaces are estimated by assuming the same log K-{Delta}E relationship for goethite surface protonation reactions. These stability constants predict a pH of zero charge of 8.9, in adequate agreement with measurements on CO{sub 2}-free goethite. The estimated stability constants differ significantly from previous estimations based on Pauling bond strength. We find that nearly all the surface oxide ions are reactive; nineteen of the twenty-six surface sites investigated have log K{sup int} between 7.7 and 9.4. This implies a site density between fifteen and sixteen reactive sites/nm for crystals dominated by (110) and (021) crystal faces. 39 refs., 8 figs., 4 tabs.

DOE Contract Number:
AC06-76RL01830
OSTI ID:
486302
Journal Information:
Geochimica et Cosmochimica Acta, Vol. 60, Issue 9; Other Information: PBD: May 1996
Country of Publication:
United States
Language:
English

Similar Records

Multisite adsorption of cadmium on goethite
Journal Article · Sun Nov 10 00:00:00 EST 1996 · Journal of Colloid and Interface Science · OSTI ID:486302

Ab Initio Modeling of Fe(II) Adsorption and Interfacial Electron Transfer at Goethite (α-FeOOH) Surfaces
Journal Article · Thu Jan 01 00:00:00 EST 2015 · Physical Chemistry Chemical Physics. PCCP, 17(22):14518-14531 · OSTI ID:486302

Iron Dissolution from Goethite (alpha-FeOOH) Surfaces in Water by Ab Initio Enhanced Free-Energy Simulations
Journal Article · Thu Jul 19 00:00:00 EDT 2018 · Journal of Physical Chemistry C · OSTI ID:486302