skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Zr{sub 9}Co{sub 2}P{sub 4} and Zr{sub 9}Ni{sub 2}P{sub 4}: A new 3D structure type, consisting of edge- and vertex-condensed Zr{sub 6} octahedra

Journal Article · · Inorganic Chemistry
DOI:https://doi.org/10.1021/ic960214a· OSTI ID:476854
;  [1]
  1. Iowa State Univ., Ames, IA (United States)

The isostructural title compounds were synthesized by arc-melting of stoichiometric ratios of ZrP, Zr, and Co and Ni, respectively, and subsequent annealing at 1450 {degrees}C. Their crystal structure (space group P4/mbm; Zr{sub 9-}Co{sub 2}P{sub 4}, a = 532.23(5) {angstrom}{sup 3}, Z = 2) is derived from a three-dimensional network of Zr{sub 6} octahedra. These octahedra are connected via common vertices to form chains parallel to the c axis and via common edges and vertices in the ab plane, resulting in one double chain and one single chain. Both kinds of the interstitial atoms, the iron-group-metal atom and the phosphorus, are situated in trigonal prismatic holes between these chains, forming short M-P and M-M{prime} bonds. These octahedra can be described as being of the M{sub 6}X{sub 8} cluster type as is also observed in the chalcogenide Chevrel phases. Due to the electronically nonsaturated character of the Zr octahedra and their three-dimensional connectivity, three-dimensional metallic properties are expected for both phosphides, and metallic behavior is confirmed by the observation of Pauli paramagnetism for both compounds.

DOE Contract Number:
W-7405-ENG-82
OSTI ID:
476854
Journal Information:
Inorganic Chemistry, Vol. 35, Issue 18; Other Information: PBD: 28 Aug 1996
Country of Publication:
United States
Language:
English