skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Cytochromes P450 in benzene metabolism and involvement of their metabolites and reactive oxygen species in toxicity

Abstract

Cytochrome P450 (CYP) 2E1 was the most efficient CYP enzyme that oxidized benzene to soluble and covalently bound metabolites in rat and human liver microsomes. The covalent binding was due mostly to the formation of benzoquinone (BQ), the oxidation product of hydroquinone (HQ), and was inversely related to the formation of soluble metabolites. In rats, inhalation of benzene K mgAiter of air caused a rapid destruction of CYP281 previously induced by phenobarbital. The ability of benzene metabolites to destroy liver microsomal CYP in vitro decreased in the order BQ > HQ > catechol > phenol. The destruction was reversed by ascorbate and diminished by {alpha}-tocopherol, suggesting that HQ was not toxic, whereas BO and serniquinone radical (SO) caused the effect. In the presence of nicotinamide adenine clinucleoticle phosphate, reduced (NADPH) the microsomes did not oxidize HQ to BQ, while the formation of superoxide anion radical from both HQ and BQ was markedly quenched. Destruction of CYP in vitro caused by HQ or BQ was not mediated by hydroxyl radical formation or by lipid peroxiclation. On the contrary, HQ and BQ inhibited NADPH-mediated lipid peroxidation. Ascorbate induced high levels of hydroxyl radical formation and lipid peroxidation, which were differentially affected bymore » quinones, indicating different mechanisms. Despite reducing the toxicity of HQ and BQ, ascorbate appeared to induce its own toxicity, reflected in high levels of lipid peroxiclation. Iron redox cycling played a significant role in the NADPH-induced hydroxyl radical formation but not in that caused by ascorbate; however, lipid peroxiclation induced by NADPH or ascorbate was suppressed by ethylenediaminetraacetate, indicating a crucial role of iron. Thus, the data indicate that the quinones destroyed CYP directly and not via oxygen activation or lipid peroxiclation. 35 refs., 9 figs., 3 tabs.« less

Authors:
; ;  [1]
  1. National Institute of Public Health, Praha (Czech Republic) [and others
Publication Date:
Sponsoring Org.:
USDOE
OSTI Identifier:
472162
Report Number(s):
CONF-9506288-
Journal ID: EVHPAZ; ISSN 0091-6765; CNN: Grant 0260-4;Grant 0955-3;Grant 2763-4; TRN: 97:001626-0014
Resource Type:
Journal Article
Resource Relation:
Journal Name: Environmental Health Perspectives; Journal Volume: 104; Journal Issue: Suppl.6; Conference: Benzene `95: international conference on benzene toxicity, carcinogenesis, and epidemiology, Piscataway, NJ (United States), 17-20 Jun 1995; Other Information: PBD: Dec 1996
Country of Publication:
United States
Language:
English
Subject:
02 PETROLEUM; 55 BIOLOGY AND MEDICINE, BASIC STUDIES; 56 BIOLOGY AND MEDICINE, APPLIED STUDIES; BENZENE; METABOLISM; QUINONES; OXIDATION; LIPIDS; ASCORBIC ACID; BIOCHEMISTRY; CYTOCHROMES; INHALATION; MICROSOMES; NICOTINAMIDE; PHENOBARBITAL; RATS; TOXICITY; OCCUPATIONAL EXPOSURE; EXHAUST GASES; AIR POLLUTION; PETROLEUM REFINERIES; HYDROXYL RADICALS

Citation Formats

Gut, I., Nedelcheva, V., and Soucek, P.. Cytochromes P450 in benzene metabolism and involvement of their metabolites and reactive oxygen species in toxicity. United States: N. p., 1996. Web. doi:10.2307/3433165.
Gut, I., Nedelcheva, V., & Soucek, P.. Cytochromes P450 in benzene metabolism and involvement of their metabolites and reactive oxygen species in toxicity. United States. doi:10.2307/3433165.
Gut, I., Nedelcheva, V., and Soucek, P.. Sun . "Cytochromes P450 in benzene metabolism and involvement of their metabolites and reactive oxygen species in toxicity". United States. doi:10.2307/3433165.
@article{osti_472162,
title = {Cytochromes P450 in benzene metabolism and involvement of their metabolites and reactive oxygen species in toxicity},
author = {Gut, I. and Nedelcheva, V. and Soucek, P.},
abstractNote = {Cytochrome P450 (CYP) 2E1 was the most efficient CYP enzyme that oxidized benzene to soluble and covalently bound metabolites in rat and human liver microsomes. The covalent binding was due mostly to the formation of benzoquinone (BQ), the oxidation product of hydroquinone (HQ), and was inversely related to the formation of soluble metabolites. In rats, inhalation of benzene K mgAiter of air caused a rapid destruction of CYP281 previously induced by phenobarbital. The ability of benzene metabolites to destroy liver microsomal CYP in vitro decreased in the order BQ > HQ > catechol > phenol. The destruction was reversed by ascorbate and diminished by {alpha}-tocopherol, suggesting that HQ was not toxic, whereas BO and serniquinone radical (SO) caused the effect. In the presence of nicotinamide adenine clinucleoticle phosphate, reduced (NADPH) the microsomes did not oxidize HQ to BQ, while the formation of superoxide anion radical from both HQ and BQ was markedly quenched. Destruction of CYP in vitro caused by HQ or BQ was not mediated by hydroxyl radical formation or by lipid peroxiclation. On the contrary, HQ and BQ inhibited NADPH-mediated lipid peroxidation. Ascorbate induced high levels of hydroxyl radical formation and lipid peroxidation, which were differentially affected by quinones, indicating different mechanisms. Despite reducing the toxicity of HQ and BQ, ascorbate appeared to induce its own toxicity, reflected in high levels of lipid peroxiclation. Iron redox cycling played a significant role in the NADPH-induced hydroxyl radical formation but not in that caused by ascorbate; however, lipid peroxiclation induced by NADPH or ascorbate was suppressed by ethylenediaminetraacetate, indicating a crucial role of iron. Thus, the data indicate that the quinones destroyed CYP directly and not via oxygen activation or lipid peroxiclation. 35 refs., 9 figs., 3 tabs.},
doi = {10.2307/3433165},
journal = {Environmental Health Perspectives},
number = Suppl.6,
volume = 104,
place = {United States},
year = {Sun Dec 01 00:00:00 EST 1996},
month = {Sun Dec 01 00:00:00 EST 1996}
}
  • Benzene is a ubiquitous occupational and environmental toxicant. Exposures to benzene both prenatally and during adulthood are associated with the development of disorders such as aplastic anemia and leukemia. Mechanisms of benzene toxicity are unknown; however, generation of reactive oxygen species (ROS) by benzene metabolites may play a role. Little is known regarding the effects of benzene metabolites on erythropoiesis. Therefore, to determine the effects of in utero exposure to benzene on the growth and differentiation of fetal erythroid progenitor cells (CFU-E), pregnant CD-1 mice were exposed to benzene and CFU-E numbers were assessed in fetal liver (hematopoietic) tissue. Inmore » addition, to determine the effect of benzene metabolite-induced ROS generation on erythropoiesis, HD3 chicken erythroblast cells were exposed to benzene, phenol, or hydroquinone followed by stimulation of erythrocyte differentiation. Our results show that in utero exposure to benzene caused significant alterations in female offspring CFU-E numbers. In addition, exposure to hydroquinone, but not benzene or phenol, significantly reduced the percentage of differentiated HD3 cells, which was associated with an increase in ROS. Pretreatment of HD3 cells with polyethylene glycol-conjugated superoxide dismutase (PEG-SOD) prevented hydroquinone-induced inhibition of erythropoiesis, supporting the hypothesis that ROS generation is involved in the development of benzene erythrotoxicity. In conclusion, this study provided evidence that ROS generated as a result of benzene metabolism may significantly alter erythroid differentiation, potentially leading to the development of Blood Disorders.« less
  • Chloroform causes hepatic and renal toxicity in a number of species. In vitro studies have indicated that chloroform can be metabolized by P450 enzymes in the kidney to nephrotoxic intermediate, although direct in vivo evidence for the role of renal P450 in the nephrotoxicity has not been reported. This study was to determine whether chloroform renal toxicity persists in a mouse model with a liver-specific deletion of the P450 reductase (Cpr) gene (liver-Cpr-null). Chloroform-induced renal toxicity and chloroform tissue levels were compared between the liver-Cpr-null and wild-type mice at 24 h following differing doses of chloroform. At a chloroform dosemore » of 150 mg/kg, the levels of blood urea nitrogen (BUN) were five times higher in the exposed group than in the vehicle-treated one for the liver-Cpr-null mice, but they were only slightly higher in the exposed group than in the vehicle-treated group for the wild-type mice. Severe lesions were found in the kidney of the liver-Cpr-null mice, while only mild lesions were found in the wild-type mice. At a chloroform dose of 300 mg/kg, severe kidney lesions were observed in both strains, yet the BUN levels were still higher in the liver-Cpr-null than in the wild-type mice. Higher chloroform levels were found in the tissues of the liver-Cpr-null mice. These findings indicated that loss of hepatic P450-dependent chloroform metabolism does not protect against chloroform-induced renal toxicity, suggesting that renal P450 enzymes play an essential role in chloroform renal toxicity.« less
  • In a preliminary paper, the authors have shown that the antimineralocorticoid spironolactone (SPL) preferentially inactivates dexamethasone (DEX) inducible rat hepatic cytochrome P450p isozymes in a suicidal manner. These findings are now confirmed, and the kinetic characteristics of such a process are detailed. In an effort to elucidate the mechanism of SPL-mediated inactivation of cytochrome P450, they have examined the metabolism of SPL in vitro. Incubation of ({sup 14}C)SPL and NADPH with liver microsomes prepared from DEX-pretreated rats results in the formation of several polar metabolites separable by HPLC with UV detection. This process is found to be dependent on NADPH,more » O{sub 2}, SPL, and enzyme concentration, as well as temperature. Furthermore, metabolite formation was significantly attenuated by P450 inhibitors CO and n-octylamine. Mass metabolites indicated that these compounds had molecular weights that corresponded to the sulfinic and sulfonic acid derivatives of deacetyl-SPL (SPL-SH). These finding document the formation of previously unreported polar metabolites of SPL by rat liver microsomes enriched in cytochrome P450p and implicate a role for this isozyme in the oxidation of the thiol moiety of deacetyl-SPL. The detection of such metabolites also implicates a catalytic trajectory that includes the thiyl radical and/or sulfenic acid species as a plausible protagonist in drug-mediated inactivation of cytochrome P450p.« less
  • The metabolism of two of benzene's phenolic metabolites, phenol and hydroquinone, by peroxidase enzymes has been studied in detail. Studies employing horseradish peroxidase and human myeloperoxidase have shown that in the presence of hydrogen peroxide phenol is converted to 4,4{prime}-diphenoquinone and other covalent binding metabolites, whereas hydroquinone is converted solely to 1,4-benzoquinone. Surprisingly, phenol stimulates the latter conversion rather than inhibiting it, an effect that may play a role in the in vivo myelotoxicity of benzene. Indeed, repeated coadministration of phenol and hydroquinone to B6C3F{sub 1} mice results in a dramatic and significant decrease in bone marrow cellularity similar tomore » that observed following benzene exposure. A mechanism of benzene-induced myelotoxicity is therefore proposed in which the accumulation and interaction of phenol and hydroquinone in the bone marrow and the peroxidase-dependent formation of 1,4-benzoquinone are important components. This mechanism may also be responsible, at least in part, for benzene's genotxic effects as 1,4-benzoquinone has been shown to damage DNA and is shown here to induce multiple micronuclei in human lymphocytes. Secondary activation of benzene's phenol metabolites in the bone marrow may therefore play an important role in benzene's myelotoxic and carcinogenic effects.« less
  • Mammalian cytochromes P450 (P450) are a family of heme-thiolate enzymes involved in the oxidative metabolism of a variety of endogenous and exogenous lipophilic compounds. Poor coupling of the P450 catalytic cycle results in continuous production of reactive oxygen species (ROS), which affect signaling pathways and other cellular functions. P450 generation of ROS is tightly controlled by regulation of gene transcription, as well as by modulation of interactions between protein constituents of the monooxygenase that affects its activity, coupling and stability. Malfunction of these mechanisms may result in a burst of ROS production, which can cause lipid peroxidation and oxidative stress.more » In turn, oxidative stress downregulates P450 levels by a variety of feedback mechanisms. This review provides an overview of recent advances in our understanding of these feedback mechanisms that serve to limit P450 production of ROS. Some of the more likely physiological and cellular effects of P450 generation of ROS are also discussed.« less