skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Collective field theory of a singular supersymmetric matrix model

Abstract

The supersymmetric collective field theory with the potential {ital v}{prime}({ital x})={omega}{ital x}{minus}{eta}/{ital x} is studied. Consistency with supersymmetry enforces a two band solution. A supersymmetric classical configuration is found, and interpreted in terms of the density of zeroes of certain Laguerre polynomials. The spectrum of the model is then studied and is seen to correspond to a massless scalar and a Majorana fermion. The {ital x} space eigenfunctions are constructed and expressed in terms of Chebyshev polynomials. Higher order interactions are also discussed.

Authors:
;  [1]
  1. Centre for Nonlinear Studies and Department of Physics, University of the Witwatersrand, PO Wits 2050, Johannesburg (South Africa)
Publication Date:
OSTI Identifier:
44810
Resource Type:
Journal Article
Resource Relation:
Journal Name: Physical Review, D; Journal Volume: 51; Journal Issue: 10; Other Information: PBD: 15 May 1995
Country of Publication:
United States
Language:
English
Subject:
66 PHYSICS; FIELD THEORIES; SUPERSYMMETRY; COLLECTIVE MODEL; DENSITY; SPECTRA; MASSLESS PARTICLES; SCALAR FIELDS; FERMIONS; EIGENFUNCTIONS

Citation Formats

de Mello Koch, R., and Rodrigues, J.P. Collective field theory of a singular supersymmetric matrix model. United States: N. p., 1995. Web. doi:10.1103/PhysRevD.51.5847.
de Mello Koch, R., & Rodrigues, J.P. Collective field theory of a singular supersymmetric matrix model. United States. doi:10.1103/PhysRevD.51.5847.
de Mello Koch, R., and Rodrigues, J.P. Mon . "Collective field theory of a singular supersymmetric matrix model". United States. doi:10.1103/PhysRevD.51.5847.
@article{osti_44810,
title = {Collective field theory of a singular supersymmetric matrix model},
author = {de Mello Koch, R. and Rodrigues, J.P.},
abstractNote = {The supersymmetric collective field theory with the potential {ital v}{prime}({ital x})={omega}{ital x}{minus}{eta}/{ital x} is studied. Consistency with supersymmetry enforces a two band solution. A supersymmetric classical configuration is found, and interpreted in terms of the density of zeroes of certain Laguerre polynomials. The spectrum of the model is then studied and is seen to correspond to a massless scalar and a Majorana fermion. The {ital x} space eigenfunctions are constructed and expressed in terms of Chebyshev polynomials. Higher order interactions are also discussed.},
doi = {10.1103/PhysRevD.51.5847},
journal = {Physical Review, D},
number = 10,
volume = 51,
place = {United States},
year = {Mon May 15 00:00:00 EDT 1995},
month = {Mon May 15 00:00:00 EDT 1995}
}
  • We study the lattice model for the supersymmetric Yang-Mills theory in two-dimensions proposed by Cohen, Kaplan, Katz, and Unsal. We re-examine the formal proof for the absence of susy-breaking counterterms as well as the stability of the vacuum by an explicit perturbative calculation for the case of U(2) gauge group. Introducing fermion masses and treating the bosonic zero momentum mode nonperturbatively, we avoid the infra-red divergences in the perturbative calculation. As a result, we find that there appear mass counterterms for finite volume which vanish in the infinite volume limit so that the theory needs no fine-tuning. We also findmore » that the supersymmetry plays an important role in stabilizing the lattice spacetime by the deconstruction.« less
  • We investigate the large N reduced model of gauge theory on a curved spacetime through the plane wave matrix model. We formally derive the action of the N=4 supersymmetric Yang-Mills theory on RxS{sup 3} from the plane wave matrix model in the large N limit. Furthermore, we evaluate the effective action of the plane wave matrix model up to the two-loop level at finite temperature. We find that the effective action is consistent with the free energy of the N=4 supersymmetric Yang-Mills theory on S{sup 3} at the high temperature limit where the planar contributions dominate. We conclude that themore » plane wave matrix model can be used as a large N reduced model to investigate nonperturbative aspects of the N=4 supersymmetric Yang-Mills theory on RxS{sup 3}.« less
  • By applying the Lehmann-Symanzik-Zimmermann (LSZ) reduction formalism we study the {ital S} matrix of collective field theory in which the Fermi energy is larger than the height of the potential. We consider the spatially symmetric and antisymmetric boundary conditions. The difference is that {ital S} matrices are proportional to the momenta of the external particles in the antisymmetric boundary conditions, while they are proportional to the energies in the symmetric boundary condition. To the order of {ital g}{sub {ital s}{ital t}}{sup 2} we find simple formulas for the {ital S} matrix of the general potential. As an application we calculatemore » the {ital S} matrix of a case which has been conjectured to describe a ``naked singularity.``« less
  • The author constructs a collective field theory for Hubbard model of high T/sub c/ superconductivity, using a path-integral method in the third quantized (slave boson) form. It is a U(1) gauge invariant theory consisting of a U(1) gauge field and a Higgs scalar. The gauge fields stands for resonating valence bonds and describes a (short range) antiferro-paramagnet phase transition by a condensation mechanism. The Higgs scalar represents spinless holes carrying electric charges. Through the confining gauge force, there formed bounded hole pairs on each link, which correspond to the vector mesons in lattice QCD. A superconducting phase is to bemore » described by a condensation of a gauge invariant order parameter for these hole pairs, and to be compared with the color confining chirally broken phase in QCD. A Ginzburg-Landau theory for the vector hole-pair field is proposed.« less
  • Recently, it was observed that self-interacting scalar quantum field theories having a non-Hermitian interaction term of the form g(i{phi}){sup 2+{delta}}, where {delta} is a real positive parameter, are physically acceptable in the sense that the energy spectrum is real and bounded below. Such theories possess PT invariance, but they are not symmetric under parity reflection or time reversal separately. This broken parity symmetry is manifested in a nonzero value for {l_angle}{phi}{r_angle}, even if {delta} is an even integer. This paper extends this idea to a two-dimensional supersymmetric quantum field theory whose superpotential is S({phi})={minus}ig(i{phi}){sup 1+{delta}}. The resulting quantum field theorymore » exhibits a broken parity symmetry for all {delta}{gt}0. However, supersymmetry remains unbroken, which is verified by showing that the ground-state energy density vanishes and that the fermion-boson mass ratio is unity. {copyright} {ital 1998} {ital The American Physical Society}« less