skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: A simplified model for calculating atmospheric radionuclide transport and early health effects from nuclear reactor accidents

Conference ·
OSTI ID:435765
 [1]; ;  [2]
  1. Brookhaven National Lab., Upton, NY (United States). Dept. of Advanced Technology
  2. Energy Research, Inc., Rockville, MD (United States)

During certain hypothetical severe accidents in a nuclear power plant, radionuclides could be released to the environment as a plume. Prediction of the atmospheric dispersion and transport of these radionuclides is important for assessment of the risk to the public from such accidents. A simplified PC-based model was developed that predicts time-integrated air concentration of each radionuclide at any location from release as a function of time-integrated source strength using the Gaussian plume model. The solution procedure involves direct analytic integration of air concentration equations over time and position, using simplified meteorology. The formulation allows for dry and wet deposition, radioactive decay and daughter buildup, reactor building wake effects, the inversion lid effect, plume rise due to buoyancy or momentum, release duration, and grass height. Based on air and ground concentrations of the radionuclides, the early dose to an individual is calculated via cloudshine, groundshine, and inhalation. The model also calculates early health effects based on the doses. This paper presents aspects of the model that would be of interest to the prediction of environmental flows and their public consequences.

Sponsoring Organization:
Nuclear Regulatory Commission, Washington, DC (United States)
OSTI ID:
435765
Report Number(s):
CONF-951135-; ISBN 0-7918-1755-5; TRN: IM9710%%423
Resource Relation:
Conference: 1995 International mechanical engineering congress and exhibition, San Francisco, CA (United States), 12-17 Nov 1995; Other Information: PBD: 1995; Related Information: Is Part Of Proceedings of the ASME Heat Transfer and Fluids Engineering Divisions: Fluid mechanics and heat transfer in sprays; Heat, mass and momentum transfer in environmental flows; Measurement techniques in multiphase flow; Multiphase transport in porous media. HTD-Volume 321; FED-Volume 233; Hoyt, J.W. [ed.] [San Diego State Univ., CA (United States)]; O`Hern, T.J. [ed.] [Sandia National Labs., Albuquerque, NM (United States)]; Presser, C. [ed.] [National Inst. of Standards and Technology, Gaithersburg, MD (United States)] [and others]; PB: 761 p.
Country of Publication:
United States
Language:
English