skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: An articulatorily constrained, maximum entropy approach to speech recognition and speech coding

Technical Report ·
DOI:https://doi.org/10.2172/432946· OSTI ID:432946

Hidden Markov models (HMM`s) are among the most popular tools for performing computer speech recognition. One of the primary reasons that HMM`s typically outperform other speech recognition techniques is that the parameters used for recognition are determined by the data, not by preconceived notions of what the parameters should be. This makes HMM`s better able to deal with intra- and inter-speaker variability despite the limited knowledge of how speech signals vary and despite the often limited ability to correctly formulate rules describing variability and invariance in speech. In fact, it is often the case that when HMM parameter values are constrained using the limited knowledge of speech, recognition performance decreases. However, the structure of an HMM has little in common with the mechanisms underlying speech production. Here, the author argues that by using probabilistic models that more accurately embody the process of speech production, he can create models that have all the advantages of HMM`s, but that should more accurately capture the statistical properties of real speech samples--presumably leading to more accurate speech recognition. The model he will discuss uses the fact that speech articulators move smoothly and continuously. Before discussing how to use articulatory constraints, he will give a brief description of HMM`s. This will allow him to highlight the similarities and differences between HMM`s and the proposed technique.

Research Organization:
Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
Sponsoring Organization:
USDOE Assistant Secretary for Human Resources and Administration, Washington, DC (United States)
DOE Contract Number:
W-7405-ENG-36
OSTI ID:
432946
Report Number(s):
LA-UR-96-3519; ON: DE97002784; TRN: AHC29704%%62
Resource Relation:
Other Information: PBD: [1996]
Country of Publication:
United States
Language:
English