skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: University of Idaho tests engines with biodiesel from waste oil

Abstract

This article reports on preliminary work at the University of Idaho that investigates the possibilities of capitalizing on Idaho`s large volumes of waste oil and potatoes-generated ethanol to produce biodiesel fuel. This fuel would be hydrogenated soy ethyl ester, MySEE for short, made through a reaction between waste oil and ethanol made from potato waste. Address for full report is given.

Authors:
 [1];  [2]
  1. Univ. of Idaho, Moscow (United States)
  2. Department of Water Resources, Boise, ID (United States)
Publication Date:
OSTI Identifier:
426105
Resource Type:
Journal Article
Resource Relation:
Journal Name: Biologue and the Regional Biomass Energy Program Reports; Journal Volume: 13; Journal Issue: 4; Other Information: PBD: 1995
Country of Publication:
United States
Language:
English
Subject:
09 BIOMASS FUELS; 54 ENVIRONMENTAL SCIENCES; GASOHOL; PERFORMANCE TESTING; WASTE OILS; WASTE PRODUCT UTILIZATION; AGRICULTURAL WASTES; DIESEL FUELS

Citation Formats

Peterson, C., and Fleischman, G. University of Idaho tests engines with biodiesel from waste oil. United States: N. p., 1995. Web.
Peterson, C., & Fleischman, G. University of Idaho tests engines with biodiesel from waste oil. United States.
Peterson, C., and Fleischman, G. Sun . "University of Idaho tests engines with biodiesel from waste oil". United States. doi:.
@article{osti_426105,
title = {University of Idaho tests engines with biodiesel from waste oil},
author = {Peterson, C. and Fleischman, G.},
abstractNote = {This article reports on preliminary work at the University of Idaho that investigates the possibilities of capitalizing on Idaho`s large volumes of waste oil and potatoes-generated ethanol to produce biodiesel fuel. This fuel would be hydrogenated soy ethyl ester, MySEE for short, made through a reaction between waste oil and ethanol made from potato waste. Address for full report is given.},
doi = {},
journal = {Biologue and the Regional Biomass Energy Program Reports},
number = 4,
volume = 13,
place = {United States},
year = {Sun Dec 31 00:00:00 EST 1995},
month = {Sun Dec 31 00:00:00 EST 1995}
}
  • Research highlights: {yields} Waste sunflower frying oil is successfully converted to biodiesel using lipase as catalyst. {yields} Various process parameters that affects the conversion of transesterification reaction such as temperature, enzyme concentration, methanol: oil ratio and solvent are optimized. {yields} Inhibitory effect of methanol on lipase is reduced by adding methanol in three stages. {yields} Polar solvents like n-hexane and n-heptane increases the conversion of tranesterification reaction. - Abstract: Waste sunflower frying oil is used in biodiesel production by transesterification using an enzyme as a catalyst in a batch reactor. Various microbial lipases have been used in transesterification reaction tomore » select an optimum lipase. The effects of various parameters such as temperature, methanol:oil ratio, enzyme concentration and solvent on the conversion of methyl ester have been studied. The Pseudomonas fluorescens enzyme yielded the highest conversion. Using the P. fluorescens enzyme, the optimum conditions included a temperature of 45 deg. C, an enzyme concentration of 5% and a methanol:oil molar ratio 3:1. To avoid an inhibitory effect, the addition of methanol was performed in three stages. The conversion obtained after 24 h of reaction increased from 55.8% to 63.84% because of the stage-wise addition of methanol. The addition of a non-polar solvent result in a higher conversion compared to polar solvents. Transesterification of waste sunflower frying oil under the optimum conditions and single-stage methanol addition was compared to the refined sunflower oil.« less
  • The crude rapeseed oil was transesterified using methanol and using sodium hydroxide as a catalyst, and the varieties affecting the monoester yield were investigated. The methyl ester fuel called Biodiesel, produced under the determined optimum reaction conditions, was tested according to the standard methods for its fuel properties. Biodiesel fuel properties were found to be very close to those of Grade No. 2-D diesel fuel. 57 refs., 5 figs., 3 tabs.
  • A study was made of the reaction of transesterification of Cynara cardunculus L. oil by means of methanol, using sodium hydroxide, potassium hydroxide, and sodium methoxide as catalysts. The objective of the work was to characterize the methyl esters for use as biodiesels in internal combustion motors. The operation variables used were methanol concentration (5--21 wt %), catalyst concentration (0.1--1 wt %), and temperature (25--60 C). The evolution of the process was followed by gas chromatography, determining the concentration of the methyl esters at different reaction times. The biodiesel was characterized by determining its density, viscosity, high heating value, cetanemore » index, cloud and pour points, Ramsbottom carbon residue, characteristics of distillation, and flash and combustion points according to ISO norms. The biodiesel with the best properties was obtained using 15% methanol, sodium methoxide as catalyst (1%), and 60 C temperature. This biodiesel has very similar properties to those of diesel No. 2.« less
  • In light of the potential of fatty acid methyl ester (FAME, i.e. biodiesel) as a renewable energy source, an innovative acid catalyzed process was developed for the synthesis of biodiesel from waste vegetable oils. The synthesized biodiesels were analytically characterized for their major components, molar fraction and molecular weight of each component, the average molecular weight, and the heat of combustion. Their droplet combustion characteristics in terms of the burning rate, flame size, and sooting tendency were subsequently determined in a high-temperature, freely-falling droplet apparatus. Results show that the biodiesel droplet has higher burning rate, and that biodiesel in generalmore » has a lower propensity to soot because its molecular oxygen content promotes the oxidation of the soot precursors.« less