skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Deposition of a-C/B films from o-carborane and trimethyl boron precursors

Conference ·
OSTI ID:419809
;  [1]
  1. Univ. of Michigan, Ann Arbor, MI (United States)

Vacuum wall deposition of a-B/C films has had tremendous positive impact on the performance of tokamak fusion reactors. In this work, precursor vapor and helium carrier gas have been used to create a plasma using a novel plasma source. Either trimethyl boron (TMB) or sublimed vapor from o-carborane solid can be used as deposition precursors. The plasma operates in a pressure range of 5 to 15 mTorr and typical flow rates are 5 sccm He plus 0.5-1 sccm o-carborane or TMB vapor. The film deposition rate ranges from less than 100 {angstrom}/minute to over 1,000 {angstrom}/minute. Microwave power levels range from 300--400 W at 2.45 GHz. The temperature and bias of the substrate can be varied, and the temperature of the substrate is recorded during deposition. The films have been analyzed using XPS. The atomic composition of the films has been measured. The o-carborane films have a much higher boron concentration than those deposited from TMB. The chemical bond characteristics of the different species have also been examined for each type of film. The thickness of the films is measured by profilometry, and this is combined with measurements of the film area and weight to calculate the film density. X-ray diffraction analysis has been performed; no evidence of any crystalline structure was found. Films with a thickness of a few thousand {angstrom} are routinely obtained. Deposition rates were 350 {angstrom}/minute on average.

OSTI ID:
419809
Report Number(s):
CONF-960634-; TRN: 97:002101
Resource Relation:
Conference: 1996 IEEE international conference on plasma science, Boston, MA (United States), 3-5 Jun 1996; Other Information: PBD: 1996; Related Information: Is Part Of IEEE conference record -- Abstracts: 1996 IEEE international conference on plasma science; PB: 324 p.
Country of Publication:
United States
Language:
English