skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Deep Levels in p-Type InGaAsN Lattice Matched to GaAs

Journal Article · · Applied Physics Letters
OSTI ID:4178

Deep level transient spectroscopy (DLTS) measurements were utilized to investigate deep level defects in metal-organic chemical deposition (MOCVD)-grown unintentionally doped p-type InGaAsN films lattice matched to GaAs. The as-grown material displayed a high concentration of deep levels distributed within the bandgap, with a dominant hole trap at E{sub v} + 0.10 eV. Post-growth annealing simplified the deep level spectra, enabling the identification of three distinct hole traps at 0.10 eV, 0.23 eV, and 0.48 eV above the valence band edge, with concentrations of 3.5 x 10{sup 14} cm{sup {minus}3}, 3.8 x 10{sup 14} cm{sup {minus}3}, and 8.2 x 10{sup 14} cm{sup {minus}3}, respectively. A direct comparison between the as-grown and annealed spectra revealed the presence of an additional midgap hole trap, with a concentration of 4 x 10{sup 14} cm{sup {minus}3} in the as-grown material. The concentration of this trap is sharply reduced by annealing, which correlates with improved material quality and minority carrier properties after annealing. Of the four hole traps detected, only the 0.48 eV level is not influenced by annealing, suggesting this level may be important for processed InGaAsN devices in the future.

Research Organization:
Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Sandia National Lab. (SNL-CA), Livermore, CA (United States)
Sponsoring Organization:
US Department of Energy (US)
DOE Contract Number:
AC04-94AL85000
OSTI ID:
4178
Report Number(s):
SAND99-0529J; TRN: AH200113%%101
Journal Information:
Applied Physics Letters, Other Information: Submitted to Applied Physics Letters; PBD: 2 Mar 1999
Country of Publication:
United States
Language:
English