skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Conceptual design report for the ICPP spent nuclear fuel dry storage project

Abstract

The conceptual design is presented for a facility to transfer spent nuclear fuel from shipping casks to dry storage containers, and to safely store those containers at ICPP at INEL. The spent fuels to be handled at the new facility are identified and overall design and operating criteria established. Physical configuration of the facility and the systems used to handle the SNF are described. Detailed cost estimate for design and construction of the facility is presented.

Publication Date:
Research Org.:
Lockheed Martin Idaho Technologies Co., Idaho Falls, ID (United States)
Sponsoring Org.:
USDOE Office of Environmental Restoration and Waste Management, Washington, DC (United States)
OSTI Identifier:
416092
Report Number(s):
INEL-96/0182
ON: TI96014156; TRN: 97:001128
DOE Contract Number:
AC07-94ID13223
Resource Type:
Technical Report
Resource Relation:
Other Information: PBD: Jul 1996
Country of Publication:
United States
Language:
English
Subject:
05 NUCLEAR FUELS; DRY STORAGE; IDAHO CHEMICAL PROCESSING PLANT; DESIGN; SPENT FUELS

Citation Formats

NONE. Conceptual design report for the ICPP spent nuclear fuel dry storage project. United States: N. p., 1996. Web. doi:10.2172/416092.
NONE. Conceptual design report for the ICPP spent nuclear fuel dry storage project. United States. doi:10.2172/416092.
NONE. Mon . "Conceptual design report for the ICPP spent nuclear fuel dry storage project". United States. doi:10.2172/416092. https://www.osti.gov/servlets/purl/416092.
@article{osti_416092,
title = {Conceptual design report for the ICPP spent nuclear fuel dry storage project},
author = {NONE},
abstractNote = {The conceptual design is presented for a facility to transfer spent nuclear fuel from shipping casks to dry storage containers, and to safely store those containers at ICPP at INEL. The spent fuels to be handled at the new facility are identified and overall design and operating criteria established. Physical configuration of the facility and the systems used to handle the SNF are described. Detailed cost estimate for design and construction of the facility is presented.},
doi = {10.2172/416092},
journal = {},
number = ,
volume = ,
place = {United States},
year = {Mon Jul 01 00:00:00 EDT 1996},
month = {Mon Jul 01 00:00:00 EDT 1996}
}

Technical Report:

Save / Share:
  • This Conceptual Design Report provides the technical basis for the Spent Nuclear Fuels Project, Canister Storage Building, and as amended by letter (correspondence number 9555700, M.E. Witherspoon to E.B. Sellers, ``Technical Baseline and Updated Cost Estimate for the Canister Storage Building``, dated October 24, 1995), includes the project cost baseline and Criteria to be used as the basis for starting detailed design in fiscal year 1995.
  • Acceptance testing of the SNF Fuel Basket Lift Grapple was accomplished to verify the design adequacy. This report shows the results affirming the design. The test was successful in demonstrating the adequacy of the grapple assembly's inconel actuator shaft and engagement balls for in loads excess of design basis loads (3200 pounds), 3X design basis loads (9600 pounds), and 5X design basis loads (16,000 pounds). The test data showed that no appreciable yielding for the inconel actuator shaft and engagement balls at loads in excess of 5X Design Basis loads. The test data also showed the grapple assembly and componentsmore » to be fully functional after loads in excess of 5X Design Basis were applied and maintained for over 10 minutes. Following testing, each actuator shaft (Item 7) was liquid penetrant inspected per ASME Section 111, Division 1 1989 and accepted per requirements of NF-5350. This examination was performed to insure that no cracking had occurred. The test indicated that no cracking had occurred. The examination reports are included as Appendix C to this document. From this test, it is concluded that the design configuration meets or exceeds the requirements specified in ANSI N 14 6 for Special Lifting Devices for Shipping Containers Weighing 10,000 Pounds (4500 kg) or More.« less
  • The Sub-project W379, ''Spent Nuclear Fuel Canister Storage Building (CSB),'' was established as part of the Spent Nuclear Fuel (SNF) Project. The primary mission of the CSB is to safely store spent nuclear fuel removed from the K Basins in dry storage until such time that it can be transferred to the national geological repository at Yucca Mountain Nevada. This sub-project was initiated in late 1994 by a series of studies and conceptual designs. These studies determined that the partially constructed storage building, originally built as part of the Hanford Waste Vitrification Plant (HWVP) Project, could be redesigned to safelymore » store the spent nuclear fuel. The scope of the CSB facility initially included a receiving station, a hot conditioning system, a storage vault, and a Multi-Canister Overpack (MCO) Handling Machine (MHM). Because of evolution of the project technical strategy, the hot conditioning system was deleted from the scope and MCO welding and sampling stations were added in its place. This report outlines the methods, procedures, and outputs developed by Project W379 to verify that the provided Structures, Systems, and Components (SSCs): satisfy the design requirements and acceptance criteria; perform their intended function; ensure that failure modes and hazards have been addressed in the design; and ensure that the SSCs as installed will not adversely impact other SSCs. Because this sub-project is still in the construction/start-up phase, all verification activities have not yet been performed (e.g., canister cover cap and welding fixture system verification, MCO Internal Gas Sampling equipment verification, and As-built verification.). The verification activities identified in this report that still are to be performed will be added to the start-up punchlist and tracked to closure.« less