skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Nonequilibrium molecular dynamics simulations of steady-state heat and mass transport in distillation

Journal Article · · Industrial and Engineering Chemistry Research
DOI:https://doi.org/10.1021/ie960199h· OSTI ID:404568
;  [1]
  1. Norwegian Univ. of Science and Technology, Trondheim (Norway). Dept. of Physical Chemistry

Coupled transport phenomena across gas/liquid interface, relevant for distillation, were studied by nonequilibrium molecular dynamics simulations. The simulations were set in the context of bulk irreversible thermodynamics. It was then shown that mole fraction profiles in the liquid phase and the gas phase of ideal isotope mixtures are linear. For nonideal mixtures, Fick`s law cannot be applied in the interface region, because the activity coefficients change dramatically across the interface. Fourier`s law has a constant heat conductivity for both types of liquid mixtures but not for gas mixtures. The coupling between heat and mass transfer becomes negligible for distillation in the special case of ideal mixtures with constant molal overflow. In all other cases, the heat of transfer contributes significantly to the heat flux and causes deviations from Fourier`s law in the gas phase. This all means that coupled flux equations are needed to describe distillation and that the properties of the surface are important for a description of the heat and mass fluxes involved. The value of the heat of transfer has a bearing on the calculation of the number of theoretical stages in the column. When considered as a function of distance from the surface, the local entropy production rate has a peak or a shoulder (depending on the conditions) slightly into the vapor. The entropy production rate in the liquid cannot be neglected compared to that of the gas. The second law efficiency of distillation was quantified from this knowledge.

OSTI ID:
404568
Journal Information:
Industrial and Engineering Chemistry Research, Vol. 35, Issue 11; Other Information: PBD: Nov 1996
Country of Publication:
United States
Language:
English

Similar Records

Analysis of entropy production rates for design of distillation columns
Journal Article · Fri Sep 01 00:00:00 EDT 1995 · Industrial and Engineering Chemistry Research · OSTI ID:404568

Separation characteristics of cryogenic distillation column with a feedback stream for separation of protium and tritium
Journal Article · Thu Jul 01 00:00:00 EDT 1982 · Nucl. Technol./Fusion; (United States) · OSTI ID:404568

Least-entropy generation: Variational principle of Onsager's type for transient hyperbolic heat and mass transfer
Journal Article · Sun Nov 15 00:00:00 EST 1992 · Physical Review A. General Physics; (United States) · OSTI ID:404568