skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Evaluation of Applied Materials` rapid thermal processor using SEMATECH methodologies for 0.25 {micro}m technology thermal applications. Part 2

Abstract

Under a joint development contract with Applied Materials (AMAT) and Texas Instruments (TI), SEMATECH undertook a project (Joint Development Project J100) with a goal of delivering a cost effective, technically advanced Rapid Thermal Processor (RTP). The RTP tool was specified to meet the present and future manufacturing needs of SEMATECH`s member companies. The J100 results contained here will focus on the temperature and control performance of the AMAT RTP tool. The J100 results on the temperature and control performance of the AMAT RTP tool. The J100 results on the temperature measurement and control performance of AMAT`s RTP tool using bare backside monitor wafers were presented in part 1. In actual manufacturing environments the backside conditions of wafers are not consistent which causes temperature variations during rapid thermal processing. In this experiment, boron monitor wafers with varying backside conditions were used to test the uniformity, repeatability, and stability of the tool. The wafer backside films were fabricated using predictions from emissivity models and were subsequently verified by experimental techniques. In addition, perturbation experiments utilizing boron and arsenic implanted wafers demonstrated a high degree of localized temperature control across the wafers. A 3-sigma temperature variation ranging from 3.0 C (for wafers withmore » similar backside films) to 6.0 C (for waters with varying backside films) was found for all wafers processed during this evaluation. The perturbation experiments, which included a forced temperature offset of two degrees at one of the wafer temperature sensors, resulted in a noticeable change in sheet resistance across the wafer.« less

Authors:
 [1];  [2];  [3]; ;  [4]
  1. SEMATECH, Austin, TX (United States)
  2. Advance Micro Devices, Austin, TX (United States)
  3. Applied Materials, Santa Clara, CA (United States)
  4. Texas Instruments, Dallas, TX (United States)
Publication Date:
OSTI Identifier:
400651
Report Number(s):
CONF-960401-
ISBN 1-55899-332-0; TRN: IM9650%%56
Resource Type:
Book
Resource Relation:
Conference: Spring meeting of the Materials Research Society (MRS), San Francisco, CA (United States), 8-12 Apr 1996; Other Information: PBD: 1996; Related Information: Is Part Of Rapid thermal and integrated processing 5; Gelpey, J.C. [ed.] [AST Elektronik USA, Inc., Lynnfield, MA (United States)]; Oeztuerk, M.C. [ed.] [North Carolina State Univ., Raleigh, NC (United States)]; Thakur, R.P.S. [ed.] [Micron Technology, Inc., Boise, ID (United States)]; Fiory, A.T. [ed.] [Bell Labs., Murray Hill, NJ (United States). Lucent Technology]; Roozeboom, F. [ed.] [Philips Research, Eindhoven (Netherlands)]; PB: 400 p.; Materials Research Society symposium proceedings, Volume 429
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; SEMICONDUCTOR MATERIALS; FABRICATION; ELECTRICAL PROPERTIES; SILICON; SILICON OXIDES; BORON ADDITIONS; ARSENIC ADDITIONS; DOPED MATERIALS; ION IMPLANTATION; TEMPERATURE CONTROL; ANNEALING; DISTURBANCES; TEMPERATURE GRADIENTS; EMISSIVITY; ETCHING; ELECTRIC CONDUCTIVITY; DATA ANALYSIS; EXPERIMENTAL DATA

Citation Formats

Nanda, A K, Riley, T J, Miner, G, Pas, M F, and Hossain-Pas, S. Evaluation of Applied Materials` rapid thermal processor using SEMATECH methodologies for 0.25 {micro}m technology thermal applications. Part 2. United States: N. p., 1996. Web.
Nanda, A K, Riley, T J, Miner, G, Pas, M F, & Hossain-Pas, S. Evaluation of Applied Materials` rapid thermal processor using SEMATECH methodologies for 0.25 {micro}m technology thermal applications. Part 2. United States.
Nanda, A K, Riley, T J, Miner, G, Pas, M F, and Hossain-Pas, S. 1996. "Evaluation of Applied Materials` rapid thermal processor using SEMATECH methodologies for 0.25 {micro}m technology thermal applications. Part 2". United States.
@article{osti_400651,
title = {Evaluation of Applied Materials` rapid thermal processor using SEMATECH methodologies for 0.25 {micro}m technology thermal applications. Part 2},
author = {Nanda, A K and Riley, T J and Miner, G and Pas, M F and Hossain-Pas, S},
abstractNote = {Under a joint development contract with Applied Materials (AMAT) and Texas Instruments (TI), SEMATECH undertook a project (Joint Development Project J100) with a goal of delivering a cost effective, technically advanced Rapid Thermal Processor (RTP). The RTP tool was specified to meet the present and future manufacturing needs of SEMATECH`s member companies. The J100 results contained here will focus on the temperature and control performance of the AMAT RTP tool. The J100 results on the temperature and control performance of the AMAT RTP tool. The J100 results on the temperature measurement and control performance of AMAT`s RTP tool using bare backside monitor wafers were presented in part 1. In actual manufacturing environments the backside conditions of wafers are not consistent which causes temperature variations during rapid thermal processing. In this experiment, boron monitor wafers with varying backside conditions were used to test the uniformity, repeatability, and stability of the tool. The wafer backside films were fabricated using predictions from emissivity models and were subsequently verified by experimental techniques. In addition, perturbation experiments utilizing boron and arsenic implanted wafers demonstrated a high degree of localized temperature control across the wafers. A 3-sigma temperature variation ranging from 3.0 C (for wafers with similar backside films) to 6.0 C (for waters with varying backside films) was found for all wafers processed during this evaluation. The perturbation experiments, which included a forced temperature offset of two degrees at one of the wafer temperature sensors, resulted in a noticeable change in sheet resistance across the wafer.},
doi = {},
url = {https://www.osti.gov/biblio/400651}, journal = {},
number = ,
volume = ,
place = {United States},
year = {Sun Dec 01 00:00:00 EST 1996},
month = {Sun Dec 01 00:00:00 EST 1996}
}

Book:
Other availability
Please see Document Availability for additional information on obtaining the full-text document. Library patrons may search WorldCat to identify libraries that hold this book.

Save / Share: