skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Atom penetration from a thin film into the substrate during sputtering by polyenergetic Ar{sup +} ion beam with mean energy of 9.4 keV

Book ·
OSTI ID:375946
; ; ;  [1]
  1. Moscow Engineering Physics Inst. (Russian Federation)

Penetration of alien atoms (Be, Ni) into Be, Al, Zr, Si and diamond was investigated under Ar{sup +} ion bombardment of samples having thermally evaporated films of 30--50 nm. Sputtering was carried out using a wide energy spectrum beam of Ar{sup +} ions of 9.4 keV to dose D = 1 {times} 10{sup 16}--10{sup 19} ion/cm{sup 2}. Implanted atom distribution in the targets was measured by Rutherford backscattering spectrometry (RBS) of H{sup +} and He{sup +} ions with energy of 1.6 MeV as well as secondary ion mass-spectrometry (SIMS). During the bombardment, the penetration depth of Ar atoms increases with dose linearly. This depth is more than 3--20 times deeper than the projected range of bombarding ions and recoil atoms. This is a deep action effect. The analysis shows that the experimental data for foreign atoms penetration depth are similar to the data calculated for atom migration through the interstitial site in a field of internal (lateral) compressive stresses created in the near-surface layer of the substrate as a result of implantation. Under these experimental conditions atom ratio r{sub i}/r{sub m} (r{sub i} -- radius of dopant, r{sub m} -- radius target of substrate) can play a principal determining role.

OSTI ID:
375946
Report Number(s):
CONF-941144-; ISBN 1-55899-255-3; TRN: IM9642%%34
Resource Relation:
Conference: Fall meeting of the Materials Research Society (MRS), Boston, MA (United States), 28 Nov - 9 Dec 1994; Other Information: PBD: 1995; Related Information: Is Part Of Beam-solid interactions for materials synthesis and characterization; Jacobson, D.C. [ed.] [AT and T Bell Labs., Murray Hill, NJ (United States)]; Luzzi, D.E. [ed.] [Univ. of Pennsylvania, Philadelphia, PA (United States)]; Heinz, T.F. [ed.] [Columbia Univ., New York, NY (United States)]; Iwaki, Masaya [ed.] [Inst. of Physical and Chemical Research, Wako, Saitama (Japan)]; PB: 763 p.; Materials Research Society symposium proceedings, Volume 354
Country of Publication:
United States
Language:
English