skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Simulation of high-average power windows for accelerator production of tritium

Abstract

Development of a robust, high-average-power (210 kW, CW) microwave transmission line system for the Accelerator Production of Tritium (APT) facility is a stringent engineering and operational requirement. One key component in this RF transmission system is the vacuum barrier window. The requirement of high-power handling capability coupled to the desirability of good mean time to failure characteristics can be treated substantially with a set of microwave, thermal-structural, and Weibull analysis codes. In this paper, we examine realistic 3-D engineering models of the ceramic windows. We model the detailed cooling circuit and make use of accurate heat deposition models for the RF. This input and simulation detail is used to analyze the thermal- structural induced stresses in baseline coaxial window configurations. We also use a Weibull-distribution failure.

Authors:
; ; ; ; ;
Publication Date:
Research Org.:
Lawrence Livermore National Laboratory, Livermore, CA
Sponsoring Org.:
USDOE Office of Defense Programs (DP)
OSTI Identifier:
3637
Report Number(s):
UCRL-JC-130420
DP0404012; ON: DE00003637
DOE Contract Number:
W-7405-Eng-48
Resource Type:
Conference
Resource Relation:
Conference: 19th International Linear Accelerator Conference (LINAC), Chicago, IL, August 23-28, 1998
Country of Publication:
United States
Language:
English
Subject:
70 PLASMA PHYSICS AND FUSION; Microwave Power Transmission; RF Systems; Windows

Citation Formats

Cummings, K A, Daily, L D, Mayhall, D J, Nelson, S D, Salem, J, and Shang, C C. Simulation of high-average power windows for accelerator production of tritium. United States: N. p., 1998. Web.
Cummings, K A, Daily, L D, Mayhall, D J, Nelson, S D, Salem, J, & Shang, C C. Simulation of high-average power windows for accelerator production of tritium. United States.
Cummings, K A, Daily, L D, Mayhall, D J, Nelson, S D, Salem, J, and Shang, C C. 1998. "Simulation of high-average power windows for accelerator production of tritium". United States. doi:. https://www.osti.gov/servlets/purl/3637.
@article{osti_3637,
title = {Simulation of high-average power windows for accelerator production of tritium},
author = {Cummings, K A and Daily, L D and Mayhall, D J and Nelson, S D and Salem, J and Shang, C C},
abstractNote = {Development of a robust, high-average-power (210 kW, CW) microwave transmission line system for the Accelerator Production of Tritium (APT) facility is a stringent engineering and operational requirement. One key component in this RF transmission system is the vacuum barrier window. The requirement of high-power handling capability coupled to the desirability of good mean time to failure characteristics can be treated substantially with a set of microwave, thermal-structural, and Weibull analysis codes. In this paper, we examine realistic 3-D engineering models of the ceramic windows. We model the detailed cooling circuit and make use of accurate heat deposition models for the RF. This input and simulation detail is used to analyze the thermal- structural induced stresses in baseline coaxial window configurations. We also use a Weibull-distribution failure.},
doi = {},
journal = {},
number = ,
volume = ,
place = {United States},
year = 1998,
month = 8
}

Conference:
Other availability
Please see Document Availability for additional information on obtaining the full-text document. Library patrons may search WorldCat to identify libraries that hold this conference proceeding.

Save / Share:
  • The 1700 MeV, 100 mA Accelerator Production of Tritium (APT) Proton Linac will require 244 1 MW, continuous wave RF systems. 1 MW continuous wave klystrons are used as the RF source and each klystron requires 95 kV, 17 A of beam voltage and current. The cost of the DC power supplies is the single largest percentage of the total RF system cost. Power supply reliability is crucial to overall RF system availability and AC to DC conversion efficiency affects the operating cost. The Low Energy Demonstration Accelerator (LEDA) being constructed at Los Alamos National Laboratory (LANL) will serve asmore » the prototype and test bed for APT. The design of the RF systems used in LEDA is driven by the need to field test high efficiency systems with extremely high reliability before APT is built. The authors present a detailed description and test results of one type of advanced high voltage power supply system using Insulated Gate Bipolar Transistors (IGBTs) that has been used with the LEDA High Power RF systems. The authors also present some of the distinctive features offered by this power supply topology, including crowbarless tube protection and modular construction which allows graceful degradation of power supply operation.« less
  • The Accelerator Production of Tritium (APT) Target/Blanket and Materials Engineering Demonstration and Development (ED and D) Project has undertaken a major program of high-power materials irradiation at the Los Alamos Neutron Science Center (LANSCE) Accelerator. Five experiments have been installed in the Target A-6 area, immediately before the Isotope Production facility and the LANSCE bearnstop, where they will take a 1.0-mAmp-proton beam for up to 10 months. This operation is classed as a Nuclear Category (cat)-3 activity, since enough radionuclides buildup in the path of tie beam to exceed cat-3 threshold quantities. In the process of analyzing this buildup, itmore » was realized that a loss of coolant accident (LOCA) could result in oxidation and subsequent vaporization of certain tungsten elements contained in our experiments. If this process occurs in the presence of steam, breakup of the water molecule would also provide a potentially explosive source of hydrogen, causing maximum release of radioactive aerosols to the surrounding environment. This process can occur in a matter of seconds. Such a release would result in potentially unacceptable dose to the public at the LANSCE site boundary, 800 meters from the A-6 area.« less
  • Hisorically, Radio Frequency (RF) windows have been a common point of failure in input power couplers; therefore, reliable RF windows are critical to the success of the Spallation Neutron Source (SNS) project. The normal conducting part of the SNS accelerator requires six RF windows at 402.5 MHz and eight RF windows at 805 MHz[l]. Each RF window will transmit up to 180 kW of average power and 2.5 MW peak power at 60 Hz with 1.2 millisecond pulses. The RF windows, designed and manufactured by Thales, were tested at the full average power for 4 hours to ensure no problemsmore » with the high average power and then tested to an effective forward power level of 10 MW by testing at 2.5 MW forward power into a short and varying the phase of the standing wave. The sliding short was moved from 0 to 180 degrees to ensure no arcing or breakdown problems occur in any part of the window. This paper discusses the results of the high power testing of both the 402.5 MHz and the 805 MHz RF windows. Problems encountered during testing and the solutions for these problems are discussed.« less
  • Which current pulsed accelerator technology was developed during the late 60`s through the late 80`s to satisfy the needs of various military related applications such as effects simulators, particle beam devices, free electron lasers, and as drivers for Inertial Confinement Fusion devices. The emphasis in these devices is to achieve very high peak power levels, with pulse lengths on the order of a few 10`s of nanoseconds, peak currents of up to 10`s of MA, and accelerating potentials of up to 10`s of MV. New which average power systems, incorporating thermal management techniques, are enabling the potential use of highmore » peak power technology in a number of diverse industrial application areas such as materials processing, food processing, stack gas cleanup, and the destruction of organic contaminants. These systems employ semiconductor and saturable magnetic switches to achieve short pulse durations that can then be added to efficiently give MV accelerating, potentials while delivering average power levels of a few 100`s of kilowatts to perhaps many megawatts. The Repetitive High Energy Puled Power project is developing short-pulse, high current accelerator technology capable of generating beams with kJ`s of energy per pulse delivered to areas of 1000 cm{sup 2} or more using ions, electrons, or x-rays. Modular technology is employed to meet the needs of a variety of applications requiring from 100`s of kV to MV`s and from 10`s to 100`s of kA. Modest repetition rates, up to a few 100`s of pulses per second (PPS), allow these machines to deliver average currents on the order of a few 100`s of mA. The design and operation of the second generation 300 kW RHEPP-II machine, now being brought on-line to operate at 2.5 MV, 25 kA, and 100 PPS will be described in detail as one example of the new high average power, high current pulsed accelerator technology.« less