skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Landfill mining for resource recovery

Abstract

Landfills are repositories of subeconomic resources. Landfill mining is an important enterprise that will someday return these resources to productive use, closing the loop on finite resources and stimulating economic development in communities near landfills. Secondary development of interred resources (landfill waste) will become economically viable as the environmental externalities of primary resource development -- e.g., the destruction of pristine habitat -- are more fully accounted for in programs of ecological design and design for environment. It is important to take an integrated and holistic approach to this new endeavor, which will be a complex assemblage of disciplines. Component disciplines include: resource economics, characterization, and excavation; contaminant control, and protection of environmental safety and health; material sorting, blending, and pretreatment; resource conversion, recovery, storage, and distribution; and reclamation for long-term land use. These technical elements must be addressed in close combination with compelling social issues such as environmental justice that may be especially critical in economically depressed communities surrounding today`s landfills.

Authors:
 [1]
  1. Tulane Univ., New Orleans, LA (United States). AB Freeman School of Business
Publication Date:
OSTI Identifier:
353629
Report Number(s):
CONF-970677-
TRN: IM9929%%175
Resource Type:
Conference
Resource Relation:
Conference: 90. annual meeting and exhibition of the Air and Waste Management Association, Toronto (Canada), 8-13 Jun 1997; Other Information: PBD: 1997; Related Information: Is Part Of 1997 proceedings of the Air and Waste Management Association`s 90. annual meeting and exhibition; PB: [7000] p.
Country of Publication:
United States
Language:
English
Subject:
32 ENERGY CONSERVATION, CONSUMPTION, AND UTILIZATION; 54 ENVIRONMENTAL SCIENCES; SANITARY LANDFILLS; MATERIALS RECOVERY; WASTE MANAGEMENT; LAND RECLAMATION; SITE CHARACTERIZATION; ECONOMICS

Citation Formats

Reith, C.C. Landfill mining for resource recovery. United States: N. p., 1997. Web.
Reith, C.C. Landfill mining for resource recovery. United States.
Reith, C.C. 1997. "Landfill mining for resource recovery". United States. doi:.
@article{osti_353629,
title = {Landfill mining for resource recovery},
author = {Reith, C.C.},
abstractNote = {Landfills are repositories of subeconomic resources. Landfill mining is an important enterprise that will someday return these resources to productive use, closing the loop on finite resources and stimulating economic development in communities near landfills. Secondary development of interred resources (landfill waste) will become economically viable as the environmental externalities of primary resource development -- e.g., the destruction of pristine habitat -- are more fully accounted for in programs of ecological design and design for environment. It is important to take an integrated and holistic approach to this new endeavor, which will be a complex assemblage of disciplines. Component disciplines include: resource economics, characterization, and excavation; contaminant control, and protection of environmental safety and health; material sorting, blending, and pretreatment; resource conversion, recovery, storage, and distribution; and reclamation for long-term land use. These technical elements must be addressed in close combination with compelling social issues such as environmental justice that may be especially critical in economically depressed communities surrounding today`s landfills.},
doi = {},
journal = {},
number = ,
volume = ,
place = {United States},
year = 1997,
month =
}

Conference:
Other availability
Please see Document Availability for additional information on obtaining the full-text document. Library patrons may search WorldCat to identify libraries that hold this conference proceeding.

Save / Share:
  • Highlights: • We compare two remediation scenarios; one with resource recovery and one without. • Economic analysis includes relevant direct costs and revenues for the landfill owner. • High degrees of metal and/or combustible contents are important economic factors. • Landfill tax and the access to a CHP can have a large impact on the result. • Combining landfill mining and remediation may decrease the project cost. - Abstract: This article analyzes the economic potential of integrating material separation and resource recovery into a landfill remediation project, and discusses the result and the largest impact factors. The analysis is donemore » using a direct costs/revenues approach and the stochastic uncertainties are handled using Monte Carlo simulation. Two remediation scenarios are applied to a hypothetical landfill. One scenario includes only remediation, while the second scenario adds resource recovery to the remediation project. Moreover, the second scenario is divided into two cases, case A and B. In case A, the landfill tax needs to be paid for re-deposited material and the landfill holder does not own a combined heat and power plant (CHP), which leads to disposal costs in the form of gate fees. In case B, the landfill tax is waived on the re-deposited material and the landfill holder owns its own CHP. Results show that the remediation project in the first scenario costs about €23/ton. Adding resource recovery as in case A worsens the result to −€36/ton, while for case B the result improves to −€14/ton. This shows the importance of landfill tax and the access to a CHP. Other important factors for the result are the material composition in the landfill, the efficiency of the separation technology used, and the price of the saleable material.« less
  • Several studies and investigations have been completed for the Millersville Sanitary Landfill in Anne Arundel County, Maryland. The studies and reports range from detailed hydrogeologic investigations through review of closure alternatives for the individual refuse disposal cells located at the landfill. As a result of the evaluations and studies, one recommendation that was put before Anne Arundel County is the excavation and relocation of refuse from Cell 3 to: (1) create an infiltration basin; and (2) reduce the overall refuse footprint at the site, resulting in reduce long term environmental impacts and closure costs. Subsequent to this recommendation, several preliminarymore » reviews have been held between Anne Arundel County, regulatory agencies and their consultants, Stearns & Wheler. These discussions indicated that it would be feasible, and the concept acceptable, to relocate the refuse in Cell 3 to ultimately create an infiltration basin. Subsequent to the preliminary meetings, a project plan and construction Contract Documents and Drawings were developed by Stearns & Wheler. The Project Plan was submitted to the State regulatory agencies (Maryland and Department of Environment (MDE) and Maryland Department of Natural Resources (DNR)), Millersville Landfill Citizen`s Advisory Committee, and Anne Arundel County (Department of public Works (DPW), Permit Acquisition and Code Enforcement (PACE) and Soil Conservation District (SCD)) for review and comment prior to undertaking the relocation of refuse in Cell 3.« less
  • Vertical pressure and concentration gradients in landfill cover materials are being examined at the Mallard North Landfill in Dupage County, IL. The goal of this project is to understand venting of landfill gas and intrusion of atmospheric gases into the landfill in response to changing meteorological conditions (particularly barometric pressure and precipitation) and pumping rates at recovery wells. Nests of probes for directly measuring soil gas pressures have been installed in areas of fractured and unfractured silty clay till cover materials. The probes are at three depths: shallow (0.6 m), intermediate (1.2 m), and deep (in the top of themore » refuse). Preliminary results from fall 1985 suggest that soil gas pressures respond quickly to changes in barometric pressure but that concentrations of methane, carbon dioxide, nitrogen, and oxygen respond more slowly to changing soil moisture conditions. An important near-surface process that limits the total amount of methane available to a gas recovery system is the activity of methanotrophs (methane-oxidizing bacteria) in oxygenated cover materials. The results of this project will be used to quantify landfill mass balance relations, improve existing predictive models for landfill gas recovery systems, and improve landfill cover design for sites where gas recovery is anticipated.« less
  • California-based Clean-Up Technology, Inc. teamed with property owners and agencies to execute one of the largest industrial landfill reclamation projects in the US. Site assessments indicated that the 10 acre site in Commerce, California, was used as an uncontrolled landfill from 1941 to 1953 before it was operated as a trucking terminal until the late 1980`s. Beneath a cover layer of soil and asphalt was 200,000 cubic years of a heterogeneous mixture of soil, concrete, rubber, wood, scrap metal, asphalt and other debris. In addition to the unstable nature of the fill, localized contamination of hydrogen and led made themore » site unsuitable for redevelopment without remediation. Clean-Up Technology designed, engineered and operated a plant to segregate debris by type, size and contamination level. This reduced the amount of contaminated material by as much as 60% and reduced costs by an estimated $5 million. The semi-automated plant performed multiple screening operations, size reduction of oversize material and separation of wood, metal, concrete and soil. The plant was designed to process the material in one pass at an average of 200 tons per hour.« less
  • This paper discusses the fifteen year operating history of a resource recovery project in a small city. It is the sequel to a paper published during the first year of operation of the project. It discusses mechanical problems and solutions, availability, and the economics of a modular combustion system generating steam for sale to an adjacent paper mill. The air pollution control retrofit and performance of a wet scrubber system for acid gas control is highlighted. The experience of co-combustion of paper mill sludge is also reported. With the decision of the City to close the landfill by 1998, ashmore » processing is under development. The goal is to prepare aggregate for beneficial use and reduce the weight of the portion requiring disposal to less than 20% of the total residue. This would reduce the weight of material requiring final disposal to less than 5% of the weight of the incoming material. The feasibility of installing a turbine generator and increasing plant capacity is under evaluation.« less