skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: InAs quantum dots: Predicted electronic structure of free-standing versus GaAs-embedded structures

Journal Article · · Physical Review, B: Condensed Matter
;  [1]
  1. National Renewable Energy Laboratory, Golden, Colorado 80401 (United States)

Using an atomistic pseudopotential approach, we have contrasted the (i) strain profiles, (ii) strain-modified band offsets, (iii) energies of confined electrons and holes, and (iv) wave functions and Coulomb interactions between electrons and holes for three types of InAs quantum dots: (a) a free-standing spherical dot, (b) a GaAs-embedded spherical dot, and (c) a GaAs-embedded pyramidal dot. A comparison of (a) and (b) reveals the effects of strain, while a comparison of (b) and (c) reveals the effects of shape. We find that the larger band offsets in the {open_quotes}free-standing{close_quotes} dots (i) produce greater quantum confinement of electrons and holes and (ii) act to confine the wave functions more strongly within the dot, resulting in larger electron-hole Coulomb energies. The lower symmetry of the pyramidal dot produces a richer strain profile than the spherical dots, which splits the degeneracy of the hole states and polarizes the emitted light. {copyright} {ital 1999} {ital The American Physical Society}

OSTI ID:
351874
Journal Information:
Physical Review, B: Condensed Matter, Vol. 59, Issue 24; Other Information: PBD: Jun 1999
Country of Publication:
United States
Language:
English

Similar Records

Pseudopotential study of electron-hole excitations in colloidal free-standing InAs quantum dots
Journal Article · Sat Jan 15 00:00:00 EST 2000 · Physical Review. B, Condensed Matter and Materials Physics · OSTI ID:351874

Free-standing versus AlAs-embedded GaAs quantum dots, wires, and films: The emergence of a zero-confinement state
Journal Article · Sat Jun 01 00:00:00 EDT 1996 · Applied Physics Letters · OSTI ID:351874

Comparison of the electronic structure of InAs/GaAs pyramidal quantum dots with different facet orientations
Journal Article · Wed Apr 01 00:00:00 EST 1998 · Physical Review, B: Condensed Matter · OSTI ID:351874