skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Antiproton fast ignition for Inertial Confinement Fusion

Technical Report ·
DOI:https://doi.org/10.2172/2846· OSTI ID:2846

With 180MJ/{micro}g, antiprotons offer the highest stored energy per unit mass of any known entity. We investigate the use of antiprotons to promote fast ignition in an ICF capsule and seek high gains with only modest compression of the main fuel. Unlike standard fast ignition where the ignition energy is supplied by an energetic, short pulse laser, the energy here is supplied through the ionization energy deposited when antiprotons annihilate at the center of a compressed fuel capsule. In the first of two candidate fast ignition schemes, the antiproton package is delivered by a low energy external ion beam. In the second, ''autocatalytic'' scheme, the antiprotons are pre-emplaced at the center of the capsule prior to compression. In both schemes, we estimate that {approximately}3x10{sup 13} antiprotons are required to initiate fast ignition in a typical ICF capsule and show that incorporation of a thin, heavy metal shell is desirable to enhance energy deposition in the igniter zone. In addition to obviating the need for a second energetic fast laser and vulnerable final optics, this scheme would achieve central without reliance on laser channeling through halo plasma or houlrahm debris. However, in addition to the unknowns involved in the storage and manipulation of antiprotons at low energy, the other large uncertainty for the practicality of such a scheme is the ultimate efficiency of antiproton production in, an external, optimized facility.

Research Organization:
Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
Sponsoring Organization:
USDOE Office of Energy Research (ER) (US)
DOE Contract Number:
W-7405-ENG-48
OSTI ID:
2846
Report Number(s):
UCRL-ID-128923; AT5015033; AT5015033; TRN: US0101370
Resource Relation:
Other Information: PBD: 24 Oct 1997
Country of Publication:
United States
Language:
English