skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Molecular dynamics study of entangled hard-chain fluids

Journal Article · · Journal of Chemical Physics
DOI:https://doi.org/10.1063/1.471802· OSTI ID:282857
; ;  [1]
  1. Department of Chemical Engineering, North Carolina State University, Raleigh, North Carolina 27695-7905 (United States)

By applying efficient computational algorithms to the simplest off-lattice polymer model{endash}the freely-jointed tangent hard-sphere chain{endash}we have been able to perform molecular dynamics simulations long enough to probe chain dynamics in the entangled regime. Chain lengths range from 8 to 192 segments while volume fractions range from 0.3 to 0.45. Analysis of the mean-square displacement (MSD), Rouse modes, scattering functions, and end-to-end vector correlations provides information about chain motion. Chain dynamics are compared with predictions of the Rouse model for short chains and the tube model of Doi and Edwards for long chains. The mean-square displacement for the inner segments of the longest chains are consistent with predictions of the tube model, reproducing the three scaling regimes that are postulated to occur. In addition, anomalous diffusive behavior in the atomic MSD of the inner segments is observed at long times as the inner segments cross over into the free diffusion limit. Rouse-mode autocorrelation functions decay non-exponentially and do not exhibit scaling consistent with the tube model. Definitive plateau-like behaviors are observed in the density{endash}density correlations, normal coordinate decay, and end-to-end vector relaxation of the 192-mer fluids at the highest density. {copyright} {ital 1996 American Institute of Physics.}

DOE Contract Number:
FG05-91ER14181
OSTI ID:
282857
Journal Information:
Journal of Chemical Physics, Vol. 104, Issue 14; Other Information: PBD: Apr 1996
Country of Publication:
United States
Language:
English

Similar Records

Molecular dynamics study of transport coefficients for hard-chain fluids
Journal Article · Sun Jan 08 00:00:00 EST 1995 · Journal of Chemical Physics; (United States) · OSTI ID:282857

Large-scale molecular dynamics study of entangled hard-chain fluids
Journal Article · Mon Aug 14 00:00:00 EDT 1995 · Physical Review Letters · OSTI ID:282857

Dynamics of poly[n]catenane melts
Journal Article · Tue Jun 02 00:00:00 EDT 2020 · Journal of Chemical Physics · OSTI ID:282857