skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: An investigation of factors affecting the entry of radon into structures on the Island of Guam

Abstract

Factors affecting the entry of radon-222 gas into structures on the Island of Guam were investigated during the summer of 1993. Research findings indicated that radon transport into buildings on Guam, and perhaps in other tropical areas, is driven by sub-grade soil pressure (positive with respect to atmospheric pressure) rather than interior buildings vacuums. Immediate and substantive increases in indoor radon concentrations were associated with environmental effects of wind and rain. Radon entry, and hence indoor radon concentrations, is significantly greater during the rainy season as opposed to the dry season. In the absence of mechanically induced interior vacuums in buildings, external environmental forces creating sub-slab pressures are the predominant factor in affecting radon entry in Guam. Indoor radon potentials can be correlated to the locations where the underlying geology is limestone. Furthermore, the radon source appears to be within the first few feet of the surface of these limestones rather than uniformly distributed throughout the limestone. The effects of seismic activity on radon entry are short-lived unless significant damage occurs to a structure. Radon entry during calm weather conditions may also be a function of the rising and falling of ocean tides.

Authors:
 [1];  [2];  [3]
  1. Colorado Vintage Companies, Inc., Colorado Springs, CO (United States)
  2. Univ. of Colorado, Colorado Springs, CO (United States)
  3. Western Regional Radon Training Center, Fort Collins, CO (United States) [and others
Publication Date:
OSTI Identifier:
269820
Report Number(s):
CONF-950999-
TRN: 96:004072-0028
Resource Type:
Conference
Resource Relation:
Conference: International radon symposium: the radon industry - the next 10 years, Nashville, TN (United States), 27-29 Sep 1995; Other Information: PBD: 1995; Related Information: Is Part Of 1995 International radon symposium. AARST today: Professionals ready for tomorrow; PB: 408 p.
Country of Publication:
United States
Language:
English
Subject:
54 ENVIRONMENTAL SCIENCES; 58 GEOSCIENCES; 56 BIOLOGY AND MEDICINE, APPLIED STUDIES; 32 ENERGY CONSERVATION, CONSUMPTION, AND UTILIZATION; BUILDINGS; RADIATION MONITORING; GEOLOGY; CORRELATIONS; RADON 222; RADIOECOLOGICAL CONCENTRATION; SOILS; RADIOACTIVITY; GUAM; LIMESTONE; TRANSPORT; RAIN; WEATHER

Citation Formats

Kladder, D.L., Burkhart, J.F., and Thorburn, M.S. An investigation of factors affecting the entry of radon into structures on the Island of Guam. United States: N. p., 1995. Web.
Kladder, D.L., Burkhart, J.F., & Thorburn, M.S. An investigation of factors affecting the entry of radon into structures on the Island of Guam. United States.
Kladder, D.L., Burkhart, J.F., and Thorburn, M.S. 1995. "An investigation of factors affecting the entry of radon into structures on the Island of Guam". United States. doi:.
@article{osti_269820,
title = {An investigation of factors affecting the entry of radon into structures on the Island of Guam},
author = {Kladder, D.L. and Burkhart, J.F. and Thorburn, M.S.},
abstractNote = {Factors affecting the entry of radon-222 gas into structures on the Island of Guam were investigated during the summer of 1993. Research findings indicated that radon transport into buildings on Guam, and perhaps in other tropical areas, is driven by sub-grade soil pressure (positive with respect to atmospheric pressure) rather than interior buildings vacuums. Immediate and substantive increases in indoor radon concentrations were associated with environmental effects of wind and rain. Radon entry, and hence indoor radon concentrations, is significantly greater during the rainy season as opposed to the dry season. In the absence of mechanically induced interior vacuums in buildings, external environmental forces creating sub-slab pressures are the predominant factor in affecting radon entry in Guam. Indoor radon potentials can be correlated to the locations where the underlying geology is limestone. Furthermore, the radon source appears to be within the first few feet of the surface of these limestones rather than uniformly distributed throughout the limestone. The effects of seismic activity on radon entry are short-lived unless significant damage occurs to a structure. Radon entry during calm weather conditions may also be a function of the rising and falling of ocean tides.},
doi = {},
journal = {},
number = ,
volume = ,
place = {United States},
year = 1995,
month =
}

Conference:
Other availability
Please see Document Availability for additional information on obtaining the full-text document. Library patrons may search WorldCat to identify libraries that hold this conference proceeding.

Save / Share:
  • The work described in this report was directed toward identifying and devising methods to minimize the previously observed variability between working level hour exposures and the alpha particle track densities resulting on Track Etch films exposed to mine atmospheres containing radon and radon daughters. The disequilibrium between radon and its daughters was shown to directly affect the Track Etch film calibration factor. The wide range of disequilibrium states possible in mine situations amply explains the variability in the previous tests. A file of published mine atmosphere composition data was compiled and was used, along with atmospheric compositions derived from severalmore » theoretical models of the atmospheric behavior, to evaluate the variability of several dosimeter configurations and concepts.« less
  • An experimental facility has been designed to comprehensively determine the influence of soil and meterological conditions on the transport of radon into underground structures. Two identical basements are equipped to continuously monitor pressure differentials, temperatures, soil moisture, precipitation, barometric pressure, wind speed, wind direction, natural ventiliation rates, and radon concentrations. A computerized data acquisition system accumulates and processes data at the rate of 6000 points per day. The experimental design is based on performing experiments in one structure, with the other used as a control. Indoor radon concentrations have temporal variations ranging from 150 to 1400 Bq m{sup -3}. Themore » corresponding entry rate of radon ranges from 300 to 10,000 Bq h{sup -1}. When the radon entry rate is high, the indoor radon concentration decreases, whereas elevated radon concentrations seem to be associated with slow but persistent radon entry rates. This inverse relationship is partially due to compensation from enhanced natural ventilation during periods when the radon entry rate is high. Correlations between measured variables in the soil and indoor-outdoor atmospheres are used to interpret these data. This laboratory has the capability to generate essential data required for developing and testing radon transport models.« less
  • The approach, status, and initial findings of a research project on radon transport through soil and entry into buildings are described. We have constructed two room-size precisely-fabricated basements at a site with relatively homogeneous soil. The structures have adjustable-size openings to the soil, are otherwise very air-tight, and are mechanically ventilated using a system that also controls the indoor-outdoor pressure difference. Numerous probes have been installed in the soil surrounding the structures to permit multipoint measurement of soil moisture content, soil temperature, permeability of soil to air, soil-gas pressure and radon concentration. State-of-the-art instrumentation is being installed for real-time monitoringmore » of these parameters plus structure ventilation rate, indoor and entering soil-gas radon concentrations, and meteorologic parameters for a period of at least one year. Many of the factors that control or influence radon entry will be modified intentionally or by changes in environmental parameters during the course of the measurements. We have found it necessary to design and fabricate a new type of probe for more accurate measurements of soil permeability. We have also verified and improved procedures for more accurate, rapid, multipoint measurements of radon concentrations using a continuous radon monitor. Identical structures, with the same instrumentation, will be constructed at additional sites with difference soil characteristics and climates. Core samples of the soil from each site are analyzed to determine density, porosity, permeability, radium content, and radon emmanation coefficient. The research project also includes steady-state and transient numerical modeling efforts that complement the experimental research and that will use the experimental data for model validation. 32 refs., 12 figs., 5 tabs.« less
  • In buildings with elevated radon concentrations, the dominant transport mechanism of radon is advective flow of soil gas into the building substructure. However, the building-soil system is often complex, making detailed studies of the radon source term difficult. In order to examine radon entry into buildings, the authors have constructed two room-size, precisely-fabricated basement structures at a site with relatively homogeneous, moderately permeable soil. The basements are identical except that one lies directly on native soil whereas the other lies on a high permeability aggregate layer. The soil pressure field and radon entry rate have been measured for different basementmore » pressures and environmental conditions. The subslab gravel layer greatly enhances the advective entry of radon into the structure; when the structures are depressurized, the radon entry rate into the structure with the subslab gravel layer is more than a factor of 3 times the radon entry rate into the other structure for the same depressurization. The gravel subslab layer also spreads the pressure field around the structure, extending the field of influence of the structure and the region from which it draws radon.« less
  • In buildings with elevated radon concentrations, the dominant transport mechanism of radon is advective flow of soil gas into the building substructure. However, the building-soil system is often complex, making detailed studies of the radon source term difficult. In order to examine radon entry into buildings, the authors have constructed two room-size, precisely-fabricated basement structures at a site with relatively homogeneous, moderately permeable soil. The basements are identical except that one lies directly on native soil whereas the other lies on a high permeability aggregate layer. The soil pressure field and radon entry rate have been measured for different basementmore » pressures and environmental conditions. The subslab gravel layer greatly enhances the advective entry of radon into the structure; when the structures are depressurized, the radon entry rate into the structure with the subslab gravel layer is more than a factor of 3 times the radon entry rate into the other structure for the same depressurization. The gravel subslab layer also spreads the pressure field around the structure, extending the field of influence of the structure and the region from which it draws radon.« less