skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Final Report for the Scaled Asynchronous Transfer Mode (ATM) Encryption Laboratory Directed Research and Development Project

Abstract

This effort studied the integration of innovative methods of key management crypto synchronization, and key agility while scaling encryption speed. Viability of these methods for encryption of ATM cell payloads at the SONET OC- 192 data rate (10 Gb/s), and for operation at OC-48 rates (2.5 Gb/s) was shown. An SNL-Developed pipelined DES design was adapted for the encryption of ATM cells. A proof-of-principle prototype circuit board containing 11 Electronically Programmable Logic Devices (each holding the equivalent of 100,000 gates) was designed, built, and used to prototype a high speed encryptor.

Authors:
;
Publication Date:
Research Org.:
Sandia National Laboratories, Albuquerque, NM, and Livermore, CA
Sponsoring Org.:
USDOE
OSTI Identifier:
2639
Report Number(s):
SAND98-2787
ON: DE00002639
DOE Contract Number:
AC04-94AL85000
Resource Type:
Technical Report
Country of Publication:
United States
Language:
English
Subject:
99 MATHEMATICS, COMPUTERS, INFORMATION SCIENCE, MANAGEMENT, LAW, MISCELLANEOUS; Security; Data Transmission; Data Transmission Systems

Citation Formats

Pierson, L.G., and Witzke, E.L. Final Report for the Scaled Asynchronous Transfer Mode (ATM) Encryption Laboratory Directed Research and Development Project. United States: N. p., 1999. Web. doi:10.2172/2639.
Pierson, L.G., & Witzke, E.L. Final Report for the Scaled Asynchronous Transfer Mode (ATM) Encryption Laboratory Directed Research and Development Project. United States. doi:10.2172/2639.
Pierson, L.G., and Witzke, E.L. Fri . "Final Report for the Scaled Asynchronous Transfer Mode (ATM) Encryption Laboratory Directed Research and Development Project". United States. doi:10.2172/2639. https://www.osti.gov/servlets/purl/2639.
@article{osti_2639,
title = {Final Report for the Scaled Asynchronous Transfer Mode (ATM) Encryption Laboratory Directed Research and Development Project},
author = {Pierson, L.G. and Witzke, E.L.},
abstractNote = {This effort studied the integration of innovative methods of key management crypto synchronization, and key agility while scaling encryption speed. Viability of these methods for encryption of ATM cell payloads at the SONET OC- 192 data rate (10 Gb/s), and for operation at OC-48 rates (2.5 Gb/s) was shown. An SNL-Developed pipelined DES design was adapted for the encryption of ATM cells. A proof-of-principle prototype circuit board containing 11 Electronically Programmable Logic Devices (each holding the equivalent of 100,000 gates) was designed, built, and used to prototype a high speed encryptor.},
doi = {10.2172/2639},
journal = {},
number = ,
volume = ,
place = {United States},
year = {Fri Jan 01 00:00:00 EST 1999},
month = {Fri Jan 01 00:00:00 EST 1999}
}

Technical Report:

Save / Share:
  • This report summarizes the activities of a Lab Directed Research and Development (LDRD) Project to investigate the viability of asynchronous transfer mode (ATM) switching technology in the local area network (LAN) environment. A number of ATM based LANs were constructed and their performance capabilities were measured. The summary report notes the measurements and lessons learned from the two-year effort.
  • This is the summary report for the Protocol Extensions for Asynchronous Transfer Mode project, funded under Sandia`s Laboratory Directed Research and Development program. During this one-year effort, techniques were examined for integrating security enhancements within standard ATM protocols, and mechanisms were developed to validate these techniques and to provide a basic set of ATM security assurances. Based on our experience during this project, recommendations were presented to the ATM Forum (a world-wide consortium of ATM product developers, service providers, and users) to assist with the development of security-related enhancements to their ATM specifications. As a result of this project, Sandiamore » has taken a leading role in the formation of the ATM Forum`s Security Working Group, and has gained valuable alliances and leading-edge experience with emerging ATM security technologies and protocols.« less
  • One of the last frontiers in nuclear physics is the discovery of the high baryon density, high temperature transition from normal hadronic matter to the unbound quark-gluon plasma or QGP. We believe that it is possible to create the QGP in the laboratory by colliding large nuclei (typically beams of gold nuclei) at relativistic energies. We proposed to use an innovative device designed and fabricated by LLNL scientists to study collective phenomena as a function of the Au beam energy between 2 and 11 GeV/A. If the QGP is formed at these energies, it is quite possible that a measuremore » of collective hydrodynamic flow would be a truly unambiguous signature of QGP formation. The goal of this proposal was to measure the collective flow as a function of the incident projectile (gold beam) energy between 2 and 11 GeV/A and search for anomalies in the flow excitation function which might indicate QGP formation. This was a three-year program tied directly to the anticipated running schedule of the AGS. During the initial state of this project, the LLNL projectile hodoscope was used in AGS experiment E866 to complete the measurement of collective flow in Au+Au collisions at 11 GeV/A. The next stage in the experimental program would have been to make identical flow measurements at beam energies of 2,4,6 and 8 GeV/A. Two separate running periods were scheduled in early FY96 for beams of 2 and 4 GeV/A. These measurements would have completed a full flow excitation function between the current measurement at 11 GeV/A and lower energy data (1 GeV/A) where we know the flow is considerably larger (300 MeV/c at a beam energy of 1 GeV/A). With the termination of this project after the first year, the opportunity to make these measurements has been lost.« less
  • The choice of technologies for the delivery of very high bandwidth throughout a facility capable of ultimately achieving gigabits per second performance, is a crucial one for any high technology facility. The components of a high bandwidth delivery system include high performance sources and sinks in the form of central facilities (major mainframes, large file storage and specialized peripherals) and powerful, full bandwidth distributed local area networks (LANs). In order to deliver bandwidth among the sources and sinks, a ubiquitous inter-/intra-building cable plant consisting of single mode and multimode fiber as well as twisted pair copper is required. The selectionmore » of the glue'' to transport and interconnect the LANs with the central facility over the pervasive cable plant is the focus of this paper. A design philosophy for high performance communications systems is proposed. A description of the traditional problems that must be overcome to provide very high bandwidth beyond the narrow confines of a computer center is given. The advantages of ATM switching and SONET physical transport are explored in the structured design presentation. The applicability of Asynchronous Transfer Mode (ATM) switching (interconnection) and Synchronous Optical NETwork (SONET) (transport) for high bandwidth delivery is described using the environment and requirements of Sandia National Laboratories as a context to examine the suitability of those technologies. The synergy and utility of ATM and SONET in the campus network are explored. Other methods for distributing high data rates are compared and contrasted to ATM and SONET with respect to cable plant impact, reliability/availability, maintainability, and capacity. Sandia is implementing a standards based foundation utilizing a pervasive single mode fiber cable plant, SONET transport, and ATM switching to meet the goals of gigabit networking.« less