skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Estimating dispersion from a tornado vortex and mesocyclone

Technical Report ·
DOI:https://doi.org/10.2172/251651· OSTI ID:251651

Atmospheric dispersion modeling is required to ensure that a postulated breach in radionuclide storage containers at the Savannah River Site (SRS) from a tornado strike of Fujita-scale intensity F2 or higher will not result in an unacceptable dose to individuals. Fujita-scale tornado descriptions are included in Appendix A of this report. Dispersion models previously used at SRS for estimating dispersion following a tornado strike were developed by D.W. Pepper in 1975 (DP-1387, Dispersion of Small Particles) and H.R. Haynes and D.W. Taylor in 1983 (DPST-82-982, Estimating Doses from Tornado Winds). Research conducted in 1983 on the formation and evolution of tornadic thunderstorms has lead to a more complete understanding of the tornado vortex and associated persistent updraft and downdraft regions within the parent thunderstorm. To ensure that appropriate, contemporary methods are used for safety analysis, the Pepper model and the Haynes and Taylor model were evaluated with respect to current knowledge of circulations within tornadic thunderstorms. Pepper`s model is complex numerically but contains most of the desired physical parameterizations. Haynes and Taylor`s model is used with the Puff-Plume model (an emergency response model on the Weather INformation and Display System at SRS) and has provisions for radionuclide deposition and rainout. Haynes and Taylor assumed heavy rain following the tornado for a period of ten minutes, followed by a lighter rain for another ten minutes, then no rain for the period when the material is transported to 100 km downwind. However, neither model incorporates the effects of a nearby thunderstorm downdraft.

Research Organization:
Savannah River Site (SRS), Aiken, SC (United States)
Sponsoring Organization:
USDOE, Washington, DC (United States)
DOE Contract Number:
AC09-89SR18035
OSTI ID:
251651
Report Number(s):
WSRC-TR-94-0386-Rev.1; ON: DE96011789; TRN: 96:016409
Resource Relation:
Other Information: PBD: Jun 1996
Country of Publication:
United States
Language:
English