skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Computational Fluid Dynamics Modeling of Bubbling in a Viscous Fluid for Validation of Waste Glass Melter Modeling

Conference ·
OSTI ID:22977520
;  [1]
  1. Idaho National Laboratory, 750 University Blvd., Idaho Falls, Idaho 83415 (United States)

At the Hanford site, radioactive waste stored in underground tanks is slated for vitrification for final disposal. A comprehensive knowledge of the glass batch melting process will be useful in optimizing the process, which could potentially reduce the cost and duration of this multi-billion dollar cleanup effort. We are developing a high-fidelity heat transfer model of a Joule-heated ceramic lined melter to improve the understanding of the complex, inter-related processes occurring with the melter. The glass conversion rates in the cold cap layer are dependent on promoting efficient heat transfer. In practice, heat transfer is augmented by inserting air bubblers into the molten glass. However, the computational simulations must be validated to provide confidence in the solutions. As part of a larger validation procedure, it is beneficial to split the physics of the melter into smaller systems to validate individually. The substitution of molten glass for a simulant liquid with similar density and viscosity at room temperature provides a way to study mixing through bubbling as an isolated effect without considering the heat transfer dynamics. The simulation results are compared to experimental data obtained by the Vitreous State Laboratory at the Catholic University of America using bubblers placed within a large acrylic tank that is similar in scale to a pilot glass waste melter. Comparisons are made for surface area of the rising air bubbles between experiments and CFD simulations for a variety of air flow rates and bubble injection depths. Also, computed bubble rise velocity is compared to a well-accepted expression for bubble terminal velocity (authors)

Research Organization:
American Nuclear Society - ANS, Thermal Hydraulics Division, 555 North Kensington Avenue, La Grange Park, IL 60526 (United States)
OSTI ID:
22977520
Resource Relation:
Conference: ATH 16: International Topical Meeting on Advances in Thermal Hydraulics, New Orleans, LA (United States), 12-16 Jun 2016; Other Information: Country of input: France; 26 refs.; available on CD Rom from American Nuclear Society - ANS, 555 North Kensington Avenue, La Grange Park, IL 60526 (United States)
Country of Publication:
United States
Language:
English