skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Effect of the doping of PC61BM electron transport layer with carbon nanodots on the performance of inverted planar MAPbI3 perovskite solar cells

Journal Article · · Solar Energy

The doping effect of carbon nanodots (CNDs) in the PC61BM electron-transport layer on the performance of inverted planar MAPbI3 perovskite solar cells (PSCs) having two different kinds of the hole-transport layer, namely organic PEDOT:PSS and inorganic NiOx, was investigated. The CH3NH3PbI3 perovskite layer was deposited in air at 35% humidity. An average 11% and 12% enhancement of the power conversion efficiency (PCE) was achieved for 1 wt% CNDs doping in the PSCs with PEDOT:PSS and NiOx, respectively. This improvement is attributed to high electron density of CNDs resulting in a triple increase of the electrical conductivity of the PC61BM layer and passivation of the perovskite/PC61BM interface that is reflected by an increase of the open-circuit voltage. In line with this, parallel resistance and fill factor of the PSCs are also improved. Moreover, the energy-resolved electrochemical impedance spectroscopy revealed additional free-charge carriers in the PC61BM layer generated under illumination that were detected via the polaron states formation in the band gap with positive effect on the short-circuit current. All these factors contribute to the PCE improvement. Stability tests of the PSC with PEDOT:PSS under a continuous 24 hour 1.5 AM illumination showed a five times smaller final PCE decrease for the 1 wt% CNDs doping of the PC61BM layer comparing to the undoped counterpart. The passivation effect of CNDs, namely electron filling the traps formed by the photo-dimerization and photo-oxidation of PC61BM molecules, is responsible for this remarkable improvement of the short-term stability. © 2019 International Solar Energy Society.

OSTI ID:
22946910
Journal Information:
Solar Energy, Vol. 189; Other Information: OAI: vinar.vin.bg.ac.rs:123456789/8435; Country of input: Serbia; ISSN 0038-092X
Country of Publication:
United States
Language:
English