Quantum-centric Supercomputing for Materials Science: A Perspective on Challenges and Future Directions
- Argonne, PHY
- Unlisted, DE
- Rio de Janeiro, IMPA; Rio de Janeiro, CBPF
- CINECA
- Arizona State U.
- LBL, Berkeley
- Donostia Intl. Phys. Ctr., San Sebastian; IKERBASQUE, Bilbao; Basque U., Bilbao
- Yonsei U.
- Chicago U.
- IBM Watson Res. Ctr.
- Cambridge U.; Cambridge U., DAMTP
- CERN
- Virginia Tech.
- Los Alamos
- Rio de Janeiro, IMPA
- Osaka U.
- U. Chicago (main); Argonne, PHY
- Chicago U.; Argonne, PHY
- Fraunhofer Inst., Kaiserslautern
- Unlisted, US
- Illinois U., Urbana
- Michigan U.
- Harbin Inst. Tech.
- Oak Ridge
- RIKEN AICS, Kobe
- Toronto U.; Toronto U., Scarborough Coll.
- Brookhaven; Rutgers U., Piscataway
- IBM, San Jose
- LBNL, Berkeley
- IBM, Cambridge
- Unlisted, UK
- Taejon, Elect. Telecomm. Res. Inst.
- Keio U.; RIKEN AICS, Kobe
- Fermilab
- Poznan Tech. U.
- IBM, Zurich
- LLNL, Livermore
- PNL, Richland; Washington U., Seattle
- Brookhaven
- Basque U., San Sebastian; IKERBASQUE, Bilbao; Donostia Intl. Phys. Ctr., San Sebastian
- Unlisted
- Princeton U.
- IAS, Julich
- U. Chicago (main)
- UC, Berkeley; LBL, Berkeley
- Brookhaven; Cal State, L.A.
- Toshiba, Kawasaki
- Wisconsin U., Madison
- Unlisted, IE
- Unlisted, FI
- KISTI, Daejeon
- Utrecht U.
- Artep Inc.
- Donostia Intl. Phys. Ctr., San Sebastian; IKERBASQUE, Bilbao
- USRA, Huntsville
- Tokyo U.
- Sandia
- Maryland U.
- RIKEN AICS, Kobe; Nishina Ctr., RIKEN
Computational models are an essential tool for the design, characterization, and discovery of novel materials. Hard computational tasks in materials science stretch the limits of existing high-performance supercomputing centers, consuming much of their simulation, analysis, and data resources. Quantum computing, on the other hand, is an emerging technology with the potential to accelerate many of the computational tasks needed for materials science. In order to do that, the quantum technology must interact with conventional high-performance computing in several ways: approximate results validation, identification of hard problems, and synergies in quantum-centric supercomputing. In this paper, we provide a perspective on how quantum-centric supercomputing can help address critical computational problems in materials science, the challenges to face in order to solve representative use cases, and new suggested directions.
- Research Organization:
- Los Alamos National Laboratory (LANL), Los Alamos, NM (United States); Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States); Fermi National Accelerator Laboratory (FNAL), Batavia, IL (United States); Brookhaven National Laboratory (BNL), Upton, NY (United States); Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States); Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States); Sandia National Lab. (SNL-CA), Livermore, CA (United States)
- Sponsoring Organization:
- USDOE Office of Science (SC), High Energy Physics (HEP)
- DOE Contract Number:
- AC02-07CH11359
- OSTI ID:
- 2282613
- Report Number(s):
- FERMILAB-PUB-24-0001-SQMS; arXiv:2312.09733; oai:inspirehep.net:2737763
- Journal Information:
- TBD, Journal Name: TBD
- Country of Publication:
- United States
- Language:
- English