skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Modular Platforms for Advanced Inspection, Locomotion, and Manipulation - 17150

Abstract

Robots can provide remote access, manipulation, and inspection capabilities to augment human workers and improve safety in potentially dangerous decommissioning, radioactive waste management, and emergency response operations. However, such activities may require navigating challenging and unstructured environments, such as those with uneven terrain, obstacles, or loose debris. This remains a difficult task, even for modern robots. What's more, a robot's physical design can inhibit it from accessing hard-to-reach areas such as the tight spaces around, underneath, or inside piping and equipment. To address these challenges, we have developed a series of physically robust hardware modules that can be configured into a variety of robot morphologies, specialized to support different operational needs. Each hardware module consists of a number of onboard sensors and a high performance actuator with a series elastic element to sense and control interaction forces for improved locomotion and manipulation. Using this hardware, we have designed several robotic platforms that support the access, manipulation, and inspection requirements of decommissioning and radioactive waste management. To highlight current capabilities and potential opportunities for technological improvement, we present the outcomes from field demonstrations of our modular platforms at the Office of Environmental Management's Science of Safety Portsmouth Gaseous Diffusion Plant Roboticsmore » Challenge. Specifically, results include a serpentine robot climbing vertical structures such as pipes, posts, and supports to demonstrate advanced inspection. Additionally, we discuss field trials of a similar modular configuration that yields a highly dexterous manipulator arm and camera system capable of adding manipulation and inspection functionality to existing structures. Results are presented from inspection tasks in which the manipulator is installed on another mobile robotic platform. Finally, we show our hardware modules can be reconfigured into platforms capable of withstanding significant impacts and of alternative means of locomotion, as may be required to cross terrain too challenging for traditional wheeled robots. Results describe the performance of a hexapod robot that uses proprioceptive feedback to locomote in outdoor trials reminiscent of emergency response conditions. (authors)« less

Authors:
; ; ;  [1]
  1. Robotics Institute, Carnegie Mellon University (United States)
Publication Date:
Research Org.:
WM Symposia, Inc., PO Box 27646, 85285-7646 Tempe, AZ (United States)
OSTI Identifier:
22794552
Report Number(s):
INIS-US-19-WM-17150
TRN: US19V0230038771
Resource Type:
Conference
Resource Relation:
Conference: WM2017 Conference: 43. Annual Waste Management Symposium, Phoenix, AZ (United States), 5-9 Mar 2017; Other Information: Country of input: France; 10 refs.; available online at: http://archive.wmsym.org/2017/index.html
Country of Publication:
United States
Language:
English
Subject:
12 MANAGEMENT OF RADIOACTIVE WASTES, AND NON-RADIOACTIVE WASTES FROM NUCLEAR FACILITIES; DECOMMISSIONING; PORTSMOUTH GASEOUS DIFFUSION PLANT; RADIOACTIVE WASTE MANAGEMENT; ROBOTS; SAFETY

Citation Formats

Ansari, Alexander, Whitman, Julian, Saund, Brad, and Choset, Howie. Modular Platforms for Advanced Inspection, Locomotion, and Manipulation - 17150. United States: N. p., 2017. Web.
Ansari, Alexander, Whitman, Julian, Saund, Brad, & Choset, Howie. Modular Platforms for Advanced Inspection, Locomotion, and Manipulation - 17150. United States.
Ansari, Alexander, Whitman, Julian, Saund, Brad, and Choset, Howie. Sat . "Modular Platforms for Advanced Inspection, Locomotion, and Manipulation - 17150". United States.
@article{osti_22794552,
title = {Modular Platforms for Advanced Inspection, Locomotion, and Manipulation - 17150},
author = {Ansari, Alexander and Whitman, Julian and Saund, Brad and Choset, Howie},
abstractNote = {Robots can provide remote access, manipulation, and inspection capabilities to augment human workers and improve safety in potentially dangerous decommissioning, radioactive waste management, and emergency response operations. However, such activities may require navigating challenging and unstructured environments, such as those with uneven terrain, obstacles, or loose debris. This remains a difficult task, even for modern robots. What's more, a robot's physical design can inhibit it from accessing hard-to-reach areas such as the tight spaces around, underneath, or inside piping and equipment. To address these challenges, we have developed a series of physically robust hardware modules that can be configured into a variety of robot morphologies, specialized to support different operational needs. Each hardware module consists of a number of onboard sensors and a high performance actuator with a series elastic element to sense and control interaction forces for improved locomotion and manipulation. Using this hardware, we have designed several robotic platforms that support the access, manipulation, and inspection requirements of decommissioning and radioactive waste management. To highlight current capabilities and potential opportunities for technological improvement, we present the outcomes from field demonstrations of our modular platforms at the Office of Environmental Management's Science of Safety Portsmouth Gaseous Diffusion Plant Robotics Challenge. Specifically, results include a serpentine robot climbing vertical structures such as pipes, posts, and supports to demonstrate advanced inspection. Additionally, we discuss field trials of a similar modular configuration that yields a highly dexterous manipulator arm and camera system capable of adding manipulation and inspection functionality to existing structures. Results are presented from inspection tasks in which the manipulator is installed on another mobile robotic platform. Finally, we show our hardware modules can be reconfigured into platforms capable of withstanding significant impacts and of alternative means of locomotion, as may be required to cross terrain too challenging for traditional wheeled robots. Results describe the performance of a hexapod robot that uses proprioceptive feedback to locomote in outdoor trials reminiscent of emergency response conditions. (authors)},
doi = {},
url = {https://www.osti.gov/biblio/22794552}, journal = {},
number = ,
volume = ,
place = {United States},
year = {2017},
month = {7}
}

Conference:
Other availability
Please see Document Availability for additional information on obtaining the full-text document. Library patrons may search WorldCat to identify libraries that hold this conference proceeding.

Save / Share: