skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Use of an extended octree structure for automatic finite element mesh generation in casting models

Conference ·
OSTI ID:227771

Mesh generation has remained one of the most serious bottlenecks in solidification simulation by finite elements. In the present study, an approach using a combined extended octree/advancing front algorithm is suggested. Using this method, automatic mesh generation can easily take account of the special demands of the casting and solidification process, i.e.: fine enmeshment near material boundaries between melt and dies, rough meshes in e.g. moulds and dies. The creation of the finite element mesh for a single casting or a complete casting system is carried out in four steps. First, a solid model of the casting system is built using an arbitrary commercial solid modeler. In the second step this solid model is converted into a so-called extended octree. The third step consists of the generation of surface meshes: in each of its final octants--the so-called leaves of the octree--a mesh of triangles will be generated on the object surfaces inside the octants and on the borders of the octants. Finally, in the fourth step, an advancing front algorithm is used to create leaf by leaf a 3-dimensional mesh of tetrahedrons.

OSTI ID:
227771
Report Number(s):
CONF-9509118-; ISBN 0-87339-297-3; TRN: IM9622%%48
Resource Relation:
Conference: 7. Conference on modeling of casting, welding and advanced solidification processes, London (United Kingdom), 10-15 Sep 1995; Other Information: PBD: 1995; Related Information: Is Part Of Modeling of casting, welding and advanced solidification processes, 7; Cross, M. [ed.] [Univ. of Greenwich, London (United Kingdom). Centre for Numerical Modeling and Process Analysis]; Campbell, J. [ed.] [Univ. of Birmingham (United Kingdom). School of Metallurgy and Materials]; PB: 1030 p.
Country of Publication:
United States
Language:
English