# Normalizers of Elementary Overgroups of Ep(2, A)

## Abstract

Let A be an involution ring, e{sub 1}, . . . , e{sub n} be a full system of Hermitian idempotents in A, let every ei generate A as a two-sided ideal, and 2 ∈ A{sup ∗}. In this paper, the normalizers of the groups Ep(2,A) · E(2,A, I) are calculated under natural assumptions on A, where Ep(2,A) denotes the elementary symplectic group, E(2,A, I) stands for the elementary subgroup of level I.

- Authors:

- St. Petersburg State University (Russian Federation)

- Publication Date:

- OSTI Identifier:
- 22773943

- Resource Type:
- Journal Article

- Journal Name:
- Journal of Mathematical Sciences

- Additional Journal Information:
- Journal Volume: 232; Journal Issue: 5; Other Information: Copyright (c) 2018 Springer Science+Business Media, LLC, part of Springer Nature; http://www.springer-ny.com; Country of input: International Atomic Energy Agency (IAEA); Journal ID: ISSN 1072-3374

- Country of Publication:
- United States

- Language:
- English

- Subject:
- 97 MATHEMATICAL METHODS AND COMPUTING; CALCULATION METHODS; HERMITIAN OPERATORS; SP GROUPS

### Citation Formats

```
Voronetsky, E. Yu., E-mail: VoronetckiiEgor@yandex.ru.
```*Normalizers of Elementary Overgroups of Ep(2, A)*. United States: N. p., 2018.
Web. doi:10.1007/S10958-018-3892-Z.

```
Voronetsky, E. Yu., E-mail: VoronetckiiEgor@yandex.ru.
```*Normalizers of Elementary Overgroups of Ep(2, A)*. United States. doi:10.1007/S10958-018-3892-Z.

```
Voronetsky, E. Yu., E-mail: VoronetckiiEgor@yandex.ru. Wed .
"Normalizers of Elementary Overgroups of Ep(2, A)". United States. doi:10.1007/S10958-018-3892-Z.
```

```
@article{osti_22773943,
```

title = {Normalizers of Elementary Overgroups of Ep(2, A)},

author = {Voronetsky, E. Yu., E-mail: VoronetckiiEgor@yandex.ru},

abstractNote = {Let A be an involution ring, e{sub 1}, . . . , e{sub n} be a full system of Hermitian idempotents in A, let every ei generate A as a two-sided ideal, and 2 ∈ A{sup ∗}. In this paper, the normalizers of the groups Ep(2,A) · E(2,A, I) are calculated under natural assumptions on A, where Ep(2,A) denotes the elementary symplectic group, E(2,A, I) stands for the elementary subgroup of level I.},

doi = {10.1007/S10958-018-3892-Z},

journal = {Journal of Mathematical Sciences},

issn = {1072-3374},

number = 5,

volume = 232,

place = {United States},

year = {2018},

month = {8}

}

Other availability

Save to My Library

You must Sign In or Create an Account in order to save documents to your library.