skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Normalizers of Elementary Overgroups of Ep(2, A)

Abstract

Let A be an involution ring, e{sub 1}, . . . , e{sub n} be a full system of Hermitian idempotents in A, let every ei generate A as a two-sided ideal, and 2 ∈ A{sup ∗}. In this paper, the normalizers of the groups Ep(2,A) · E(2,A, I) are calculated under natural assumptions on A, where Ep(2,A) denotes the elementary symplectic group, E(2,A, I) stands for the elementary subgroup of level I.

Authors:
 [1]
  1. St. Petersburg State University (Russian Federation)
Publication Date:
OSTI Identifier:
22773943
Resource Type:
Journal Article
Journal Name:
Journal of Mathematical Sciences
Additional Journal Information:
Journal Volume: 232; Journal Issue: 5; Other Information: Copyright (c) 2018 Springer Science+Business Media, LLC, part of Springer Nature; http://www.springer-ny.com; Country of input: International Atomic Energy Agency (IAEA); Journal ID: ISSN 1072-3374
Country of Publication:
United States
Language:
English
Subject:
97 MATHEMATICAL METHODS AND COMPUTING; CALCULATION METHODS; HERMITIAN OPERATORS; SP GROUPS

Citation Formats

Voronetsky, E. Yu., E-mail: VoronetckiiEgor@yandex.ru. Normalizers of Elementary Overgroups of Ep(2, A). United States: N. p., 2018. Web. doi:10.1007/S10958-018-3892-Z.
Voronetsky, E. Yu., E-mail: VoronetckiiEgor@yandex.ru. Normalizers of Elementary Overgroups of Ep(2, A). United States. doi:10.1007/S10958-018-3892-Z.
Voronetsky, E. Yu., E-mail: VoronetckiiEgor@yandex.ru. Wed . "Normalizers of Elementary Overgroups of Ep(2, A)". United States. doi:10.1007/S10958-018-3892-Z.
@article{osti_22773943,
title = {Normalizers of Elementary Overgroups of Ep(2, A)},
author = {Voronetsky, E. Yu., E-mail: VoronetckiiEgor@yandex.ru},
abstractNote = {Let A be an involution ring, e{sub 1}, . . . , e{sub n} be a full system of Hermitian idempotents in A, let every ei generate A as a two-sided ideal, and 2 ∈ A{sup ∗}. In this paper, the normalizers of the groups Ep(2,A) · E(2,A, I) are calculated under natural assumptions on A, where Ep(2,A) denotes the elementary symplectic group, E(2,A, I) stands for the elementary subgroup of level I.},
doi = {10.1007/S10958-018-3892-Z},
journal = {Journal of Mathematical Sciences},
issn = {1072-3374},
number = 5,
volume = 232,
place = {United States},
year = {2018},
month = {8}
}