# The Case of Integrable Systems with Dissipation on the Tangent Bundle of a Multidimensional Sphere

## Abstract

We establish the integrability of dynamical systems of some classes arising in multidimensional dynamics. The force fields under consideration possess the so-called variable dissipation with zero mean and generalize the studied earlier ones.

- Authors:

- Lomonosov Moscow State University, Institute of Mechanics (Russian Federation)

- Publication Date:

- OSTI Identifier:
- 22771586

- Resource Type:
- Journal Article

- Journal Name:
- Journal of Mathematical Sciences

- Additional Journal Information:
- Journal Volume: 228; Journal Issue: 6; Other Information: Copyright (c) 2018 Springer Science+Business Media, LLC, part of Springer Nature; http://www.springer-ny.com; Country of input: International Atomic Energy Agency (IAEA); Journal ID: ISSN 1072-3374

- Country of Publication:
- United States

- Language:
- English

- Subject:
- 97 MATHEMATICAL METHODS AND COMPUTING; INTEGRABILITY; INTEGRABLE SYSTEMS; MANY-DIMENSIONAL CALCULATIONS; RIEMANN SPACE; SPHERES

### Citation Formats

```
Shamolin, M. V., E-mail: shamolin@rambler.ru.
```*The Case of Integrable Systems with Dissipation on the Tangent Bundle of a Multidimensional Sphere*. United States: N. p., 2018.
Web. doi:10.1007/S10958-017-3649-0.

```
Shamolin, M. V., E-mail: shamolin@rambler.ru.
```*The Case of Integrable Systems with Dissipation on the Tangent Bundle of a Multidimensional Sphere*. United States. doi:10.1007/S10958-017-3649-0.

```
Shamolin, M. V., E-mail: shamolin@rambler.ru. Thu .
"The Case of Integrable Systems with Dissipation on the Tangent Bundle of a Multidimensional Sphere". United States. doi:10.1007/S10958-017-3649-0.
```

```
@article{osti_22771586,
```

title = {The Case of Integrable Systems with Dissipation on the Tangent Bundle of a Multidimensional Sphere},

author = {Shamolin, M. V., E-mail: shamolin@rambler.ru},

abstractNote = {We establish the integrability of dynamical systems of some classes arising in multidimensional dynamics. The force fields under consideration possess the so-called variable dissipation with zero mean and generalize the studied earlier ones.},

doi = {10.1007/S10958-017-3649-0},

journal = {Journal of Mathematical Sciences},

issn = {1072-3374},

number = 6,

volume = 228,

place = {United States},

year = {2018},

month = {2}

}

Other availability

Save to My Library

You must Sign In or Create an Account in order to save documents to your library.