skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Effect of Ag in CdSe thin films prepared using thermal evaporation

Journal Article · · Semiconductors
;  [1];  [2]
  1. National Institute of Technology, Thin Film Laboratory, Department of Physics (India)
  2. NMAM Institute of Technology, Department of Physics (India)

It has been a general practice to dope thin films with suitable dopants to modify the properties of the films to make them more suitable for potential applications. When the dopant concentrations are low, they do not normally affect the structure and morphology of the films. However, it may lead to drastic changes in electronic properties of the films. This might result from the dopant getting incorporated into the lattice of the material of the films. Cadmium selenide is an important compound semiconductor material with an attractive energy band gap. The present work relates to an attempt made to dope CdSe thin films with silver. CdSe:Ag (1–5%) thin films were deposited on glass substrates at an optimized substrate temperature of 453 K using thermal evaporation technique. The grown films were analyzed using X-ray diffraction, scanning electron microscopy (SEM), energy dispersive analysis of X-ray (EDX) techniques. It is observed that undoped CdSe thin films and CdSe:Ag films have hexagonal structure. The grain size was found to increase marginally with an increase in the Ag concentration. The optical band gap of the films determined by optical transmission measurements agree with that of CdSe. Electrical conductivity is observed to increase from 10{sup –4} to 3.66 (Ω cm){sup –1} on addition of silver. The variation of resistance with temperature indicates that the prepared films consist of CdSe and Ag existing as two separate phases coexisting and contributing individually to the resistivity of the films.

OSTI ID:
22756234
Journal Information:
Semiconductors, Vol. 51, Issue 12; Other Information: Copyright (c) 2017 Pleiades Publishing, Ltd.; Country of input: International Atomic Energy Agency (IAEA); ISSN 1063-7826
Country of Publication:
United States
Language:
English